T(15,2): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- Script generated - do not edit! -->


<!-- -->
<!-- --(--(--(--ca)))mK$Faidaileds$idpa$Faidnt$ileddtres$Failed$Failedadd$Failed$FailedFailed''[[usCeGssd$Failede=$Fail$Failedwk-ThistlaeCes|Dowr - T2aepa$Faeal Invarnts|name=T(3,2)}}


<span id="top"></span>
===[[Finite Type (Vassilievvnid===$F$Failedyle="padding-left: 1em;"$Failed)

{{Knot Navigation Links|prev=T(5,4).jpg|next=T(8,3).jpg}}

Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,1,-2,3,-4,5,-6,7/goTop.html T(15,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!

Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/15.2.html T(15,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!

===Knot presentations===

{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | X<sub>9,25,10,24</sub> X<sub>25,11,26,10</sub> X<sub>11,27,12,26</sub> X<sub>27,13,28,12</sub> X<sub>13,29,14,28</sub> X<sub>29,15,30,14</sub> X<sub>15,1,16,30</sub> X<sub>1,17,2,16</sub> X<sub>17,3,18,2</sub> X<sub>3,19,4,18</sub> X<sub>19,5,20,4</sub> X<sub>5,21,6,20</sub> X<sub>21,7,22,6</sub> X<sub>7,23,8,22</sub> X<sub>23,9,24,8</sub>
|-
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | {-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7}
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14
|}
|}


===Polynomial invariants===
[[KhovHomolFlei ovenailed > a shoFaile</math>, over ternationmathmath>). The squares th < failedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><$ilednenter>

<td wid$Failedled$Failed>j</td><td>&nbsp;</td$Failed/tr>
{{Polynomial Invariants|name=T(15,2)}}
</ta F$Failed----------

$Failedlednte<td>9</td>$Failed><t$Failedo$Failedo$Fail$Fa$Fail (ediled > $Failed & )d$Failed>$Faed > $Fa$Fled style="colo$Failededd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Fdp $Faidd$Faile$Failailed > tdtd --(--(-$Failed------))pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[To$Failed]]</now$Failededp$Failed $Failedo$F$F$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$ido$Failed > $Failedea$Failed && $Failedea$Failed < $Faile$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failednbsp ((($Failed & ) nbsp; ) & )/now$Faile t
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
-$Failed+ borde $Failed < $Fa
{| style="margin-left: 1em;"
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failepadd$Failedpr</td><t$Failedadding:$Failedailed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failedn$Faile$Failed$Failedding: 0em"><nok$FailedFailed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Fapaddg: 0em"><nowiki>S$Faileds$Fledq$Failed < $Failedl$Failedr$Faidk$Failedl$Failedi$Failedt$Failedp$Failedt$Failedi$FailedK$Failedt$Failedorder: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nb$Failedyle="color: blackpadding:0<wiki > 8 2 + 2 q $Failedi$Failedr$Failed $Failedpcolor: red; border: 0px; padding: 0emn$Failed]$Failedd$Failedd$Failedd$Failed 3
|-
-8 z-$Failed
|'''V<sub>2</sub> and V<sub>3</sub>'''
2 5 3 4 $Failed/pre></td></tr>
|style="padding-left: 1em;" | {0, 140})
<$Failed"$Failedp$Failed4$Failed>$Failed;$Failedl$Failedi$Failed"pai$Failed;$Failed/$Failed"paddin $Failed=dding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr>
|}
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3

q + q + q t + q t</nowiki></pre></td></tr>
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<td width=10.%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=5.%>0</td ><td width=5.%>1</td ><td width=5.%>2</td ><td width=5.%>3</td ><td width=5.%>4</td ><td width=5.%>5</td ><td width=5.%>6</td ><td width=5.%>7</td ><td width=5.%>8</td ><td width=5.%>9</td ><td width=5.%>10</td ><td width=5.%>11</td ><td width=5.%>12</td ><td width=5.%>13</td ><td width=5.%>14</td ><td width=5.%>15</td ><td width=10.%>&chi;</td></tr>
<tr align=center><td>45</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>43</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>41</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>39</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>37</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>35</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>33</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>31</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>29</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>27</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>21</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[15, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[15, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26],
X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14],
X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18],
X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22],
X[23, 9, 24, 8]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[15, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8,
-9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[15, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[15, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -5 -4 -3 -2 1 2 3 4 5
-1 + t - t + t - t + t - t + - + t - t + t - t + t -
t
6 7
t + t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[15, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14
1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 14}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[15, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 10 11 12 13 14 15 16 17 18 19
q + q - q + q - q + q - q + q - q + q - q + q -
20 21 22
q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
Include[ColouredJonesM.mhtml]
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[15, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 26 28 30 32 34 58 60 62
q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[15, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-7 8 z z z z z z z 7 z z
--- - --- + --- - --- + --- - --- + --- - --- + --- + --- + --- -
16 14 29 27 25 23 21 19 17 15 28
a a a a a a a a a a a
2 2 2 2 2 2 2 3 3
2 z 3 z 4 z 5 z 6 z 63 z 84 z z 3 z
---- + ---- - ---- + ---- - ---- + ----- + ----- + --- - ---- +
26 24 22 20 18 16 14 27 25
a a a a a a a a a
3 3 3 3 3 4 4 4 4
6 z 10 z 15 z 21 z 56 z z 4 z 10 z 20 z
---- - ----- + ----- - ----- - ----- + --- - ---- + ----- - ----- +
23 21 19 17 15 26 24 22 20
a a a a a a a a a
4 4 4 5 5 5 5 5
35 z 182 z 252 z z 5 z 15 z 35 z 70 z
----- - ------ - ------ + --- - ---- + ----- - ----- + ----- +
18 16 14 25 23 21 19 17
a a a a a a a a
5 6 6 6 6 6 6 7 7
126 z z 6 z 21 z 56 z 246 z 330 z z 7 z
------ + --- - ---- + ----- - ----- + ------ + ------ + --- - ---- +
15 24 22 20 18 16 14 23 21
a a a a a a a a a
7 7 7 8 8 8 8 8 9
28 z 84 z 120 z z 8 z 36 z 175 z 220 z z
----- - ----- - ------ + --- - ---- + ----- - ------ - ------ + --- -
19 17 15 22 20 18 16 14 21
a a a a a a a a a
9 9 9 10 10 10 10 11
9 z 45 z 55 z z 10 z 67 z 78 z z
---- + ----- + ----- + --- - ------ + ------ + ------ + --- -
19 17 15 20 18 16 14 19
a a a a a a a a
11 11 12 12 12 13 13 14 14
11 z 12 z z 13 z 14 z z z z z
------ - ------ + --- - ------ - ------ + --- + --- + --- + ---
17 15 18 16 14 17 15 16 14
a a a a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 140}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[15, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 13 15 17 2 21 3 21 4 25 5 25 6 29 7
q + q + q t + q t + q t + q t + q t + q t +
29 8 33 9 33 10 37 11 37 12 41 13 41 14
q t + q t + q t + q t + q t + q t + q t +
45 15
q t</nowiki></pre></td></tr>
</table>
</table>

Revision as of 18:35, 26 August 2005


[[Image:T(5,4).{{{ext}}}|80px|link=T(5,4)]]

T(5,4)

[[Image:T(8,3).{{{ext}}}|80px|link=T(8,3)]]

T(8,3)

Visit T(15,2)'s page at Knotilus!

Visit T(15,2)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8
Gauss code {-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7}
Dowker-Thistlethwaite code 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 15, 14 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(15,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(15,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 140})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415χ
45               1-1
43                0
41             11 0
39                0
37           11   0
35                0
33         11     0
31                0
29       11       0
27                0
25     11         0
23                0
21   11           0
19                0
17  1             1
151               1
131               1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[15, 2]]
Out[2]=   
15
In[3]:=
PD[TorusKnot[15, 2]]
Out[3]=   
PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26], 
 X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], 

 X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], 

 X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22], 

X[23, 9, 24, 8]]
In[4]:=
GaussCode[TorusKnot[15, 2]]
Out[4]=   
GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, 
  -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7]
In[5]:=
BR[TorusKnot[15, 2]]
Out[5]=   
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[15, 2]][t]
Out[6]=   
      -7    -6    -5    -4    -3    -2   1        2    3    4    5

-1 + t - t + t - t + t - t + - + t - t + t - t + t -

                                        t

  6    7
t + t
In[7]:=
Conway[TorusKnot[15, 2]][z]
Out[7]=   
        2        4        6        8       10       12    14
1 + 28 z  + 126 z  + 210 z  + 165 z  + 66 z   + 13 z   + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{}
In[9]:=
{KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]}
Out[9]=   
{15, 14}
In[10]:=
J=Jones[TorusKnot[15, 2]][q]
Out[10]=   
 7    9    10    11    12    13    14    15    16    17    18    19

q + q - q + q - q + q - q + q - q + q - q + q -

  20    21    22
q + q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{}
In[12]:=
A2Invariant[TorusKnot[15, 2]][q]
Out[12]=   
 26    28      30    32    34    58    60    62
q   + q   + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[TorusKnot[15, 2]][a, z]
Out[13]=   
                                                             2

-7 8 z z z z z z z 7 z z --- - --- + --- - --- + --- - --- + --- - --- + --- + --- + --- -

16    14    29    27    25    23    21    19    17    15    28

a a a a a a a a a a a

    2      2      2      2      2       2       2    3       3
 2 z    3 z    4 z    5 z    6 z    63 z    84 z    z     3 z
 ---- + ---- - ---- + ---- - ---- + ----- + ----- + --- - ---- + 
  26     24     22     20     18      16      14     27    25
 a      a      a      a      a       a       a      a     a

    3       3       3       3       3    4       4       4       4
 6 z    10 z    15 z    21 z    56 z    z     4 z    10 z    20 z
 ---- - ----- + ----- - ----- - ----- + --- - ---- + ----- - ----- + 
  23      21      19      17      15     26    24      22      20
 a       a       a       a       a      a     a       a       a

     4        4        4    5       5       5       5       5
 35 z    182 z    252 z    z     5 z    15 z    35 z    70 z
 ----- - ------ - ------ + --- - ---- + ----- - ----- + ----- + 
   18      16       14      25    23      21      19      17
  a       a        a       a     a       a       a       a

      5    6       6       6       6        6        6    7       7
 126 z    z     6 z    21 z    56 z    246 z    330 z    z     7 z
 ------ + --- - ---- + ----- - ----- + ------ + ------ + --- - ---- + 
   15      24    22      20      18      16       14      23    21
  a       a     a       a       a       a        a       a     a

     7       7        7    8       8       8        8        8    9
 28 z    84 z    120 z    z     8 z    36 z    175 z    220 z    z
 ----- - ----- - ------ + --- - ---- + ----- - ------ - ------ + --- - 
   19      17      15      22    20      18      16       14      21
  a       a       a       a     a       a       a        a       a

    9       9       9    10       10       10       10    11
 9 z    45 z    55 z    z     10 z     67 z     78 z     z
 ---- + ----- + ----- + --- - ------ + ------ + ------ + --- - 
  19      17      15     20     18       16       14      19
 a       a       a      a      a        a        a       a

     11       11    12       12       12    13    13    14    14
 11 z     12 z     z     13 z     14 z     z     z     z     z
 ------ - ------ + --- - ------ - ------ + --- + --- + --- + ---
   17       15      18     16       14      17    15    16    14
a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]}
Out[14]=   
{0, 140}
In[15]:=
Kh[TorusKnot[15, 2]][q, t]
Out[15]=   
 13    15    17  2    21  3    21  4    25  5    25  6    29  7

q + q + q t + q t + q t + q t + q t + q t +

  29  8    33  9    33  10    37  11    37  12    41  13    41  14
 q   t  + q   t  + q   t   + q   t   + q   t   + q   t   + q   t   + 

  45  15
q t