T(15,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- Script generated - do not edit! --> |
<!-- Script generated - do not edit! --> |
||
<!-- --> |
|||
<!-- --(--(--(--ca)))mK$Faidaileds$idpa$Faidnt$ileddtres$Failed$Failedadd$Failed$FailedFailed''[[usCeGssd$Failede=$Fail$Failedwk-ThistlaeCes|Dowr - T2aepa$Faeal Invarnts|name=T(3,2)}} |
|||
<span id="top"></span> |
|||
===[[Finite Type (Vassilievvnid===$F$Failedyle="padding-left: 1em;"$Failed) |
|||
{{Knot Navigation Links|prev=T(5,4).jpg|next=T(8,3).jpg}} |
|||
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,1,-2,3,-4,5,-6,7/goTop.html T(15,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/15.2.html T(15,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>9,25,10,24</sub> X<sub>25,11,26,10</sub> X<sub>11,27,12,26</sub> X<sub>27,13,28,12</sub> X<sub>13,29,14,28</sub> X<sub>29,15,30,14</sub> X<sub>15,1,16,30</sub> X<sub>1,17,2,16</sub> X<sub>17,3,18,2</sub> X<sub>3,19,4,18</sub> X<sub>19,5,20,4</sub> X<sub>5,21,6,20</sub> X<sub>21,7,22,6</sub> X<sub>7,23,8,22</sub> X<sub>23,9,24,8</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | {-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7} |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 |
|||
|} |
|} |
||
===Polynomial invariants=== |
|||
[[KhovHomolFlei ovenailed > a shoFaile</math>, over ternationmathmath>). The squares th < failedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><$ilednenter> |
|||
<td wid$Failedled$Failed>j</td><td> </td$Failed/tr> |
|||
{{Polynomial Invariants|name=T(15,2)}} |
|||
</ta F$Failed---------- |
|||
$Failedlednte<td>9</td>$Failed><t$Failedo$Failedo$Fail$Fa$Fail (ediled > $Failed & )d$Failed>$Faed > $Fa$Fled style="colo$Failededd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Fdp $Faidd$Faile$Failailed > tdtd --(--(-$Failed------))pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[To$Failed]]</now$Failededp$Failed $Failedo$F$F$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$ido$Failed > $Failedea$Failed && $Failedea$Failed < $Faile$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failednbsp ((($Failed & ) nbsp; ) & )/now$Faile t |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
-$Failed+ borde $Failed < $Fa |
|||
{| style="margin-left: 1em;" |
|||
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failepadd$Failedpr</td><t$Failedadding:$Failedailed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failedn$Faile$Failed$Failedding: 0em"><nok$FailedFailed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Fapaddg: 0em"><nowiki>S$Faileds$Fledq$Failed < $Failedl$Failedr$Faidk$Failedl$Failedi$Failedt$Failedp$Failedt$Failedi$FailedK$Failedt$Failedorder: 0px; padding: 0em"><nowiki>Out[12]= &nb$Failedyle="color: blackpadding:0<wiki > 8 2 + 2 q $Failedi$Failedr$Failed $Failedpcolor: red; border: 0px; padding: 0emn$Failed]$Failedd$Failedd$Failedd$Failed 3 |
|||
|- |
|||
-8 z-$Failed |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
2 5 3 4 $Failed/pre></td></tr> |
|||
|style="padding-left: 1em;" | {0, 140}) |
|||
<$Failed"$Failedp$Failed4$Failed>$Failed;$Failedl$Failedi$Failed"pai$Failed;$Failed/$Failed"paddin $Failed=dding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr> |
|||
|} |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3 |
|||
q + q + q t + q t</nowiki></pre></td></tr> |
|||
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=10.%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=5.%>0</td ><td width=5.%>1</td ><td width=5.%>2</td ><td width=5.%>3</td ><td width=5.%>4</td ><td width=5.%>5</td ><td width=5.%>6</td ><td width=5.%>7</td ><td width=5.%>8</td ><td width=5.%>9</td ><td width=5.%>10</td ><td width=5.%>11</td ><td width=5.%>12</td ><td width=5.%>13</td ><td width=5.%>14</td ><td width=5.%>15</td ><td width=10.%>χ</td></tr> |
|||
<tr align=center><td>45</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>43</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>41</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>39</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>37</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>35</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>33</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>31</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>29</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26], |
|||
X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], |
|||
X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], |
|||
X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22], |
|||
X[23, 9, 24, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, |
|||
-9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[15, 2]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -5 -4 -3 -2 1 2 3 4 5 |
|||
-1 + t - t + t - t + t - t + - + t - t + t - t + t - |
|||
t |
|||
6 7 |
|||
t + t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[15, 2]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 |
|||
1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 14}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[15, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 10 11 12 13 14 15 16 17 18 19 |
|||
q + q - q + q - q + q - q + q - q + q - q + q - |
|||
20 21 22 |
|||
q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
Include[ColouredJonesM.mhtml] |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[15, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 26 28 30 32 34 58 60 62 |
|||
q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[15, 2]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-7 8 z z z z z z z 7 z z |
|||
--- - --- + --- - --- + --- - --- + --- - --- + --- + --- + --- - |
|||
16 14 29 27 25 23 21 19 17 15 28 |
|||
a a a a a a a a a a a |
|||
2 2 2 2 2 2 2 3 3 |
|||
2 z 3 z 4 z 5 z 6 z 63 z 84 z z 3 z |
|||
---- + ---- - ---- + ---- - ---- + ----- + ----- + --- - ---- + |
|||
26 24 22 20 18 16 14 27 25 |
|||
a a a a a a a a a |
|||
3 3 3 3 3 4 4 4 4 |
|||
6 z 10 z 15 z 21 z 56 z z 4 z 10 z 20 z |
|||
---- - ----- + ----- - ----- - ----- + --- - ---- + ----- - ----- + |
|||
23 21 19 17 15 26 24 22 20 |
|||
a a a a a a a a a |
|||
4 4 4 5 5 5 5 5 |
|||
35 z 182 z 252 z z 5 z 15 z 35 z 70 z |
|||
----- - ------ - ------ + --- - ---- + ----- - ----- + ----- + |
|||
18 16 14 25 23 21 19 17 |
|||
a a a a a a a a |
|||
5 6 6 6 6 6 6 7 7 |
|||
126 z z 6 z 21 z 56 z 246 z 330 z z 7 z |
|||
------ + --- - ---- + ----- - ----- + ------ + ------ + --- - ---- + |
|||
15 24 22 20 18 16 14 23 21 |
|||
a a a a a a a a a |
|||
7 7 7 8 8 8 8 8 9 |
|||
28 z 84 z 120 z z 8 z 36 z 175 z 220 z z |
|||
----- - ----- - ------ + --- - ---- + ----- - ------ - ------ + --- - |
|||
19 17 15 22 20 18 16 14 21 |
|||
a a a a a a a a a |
|||
9 9 9 10 10 10 10 11 |
|||
9 z 45 z 55 z z 10 z 67 z 78 z z |
|||
---- + ----- + ----- + --- - ------ + ------ + ------ + --- - |
|||
19 17 15 20 18 16 14 19 |
|||
a a a a a a a a |
|||
11 11 12 12 12 13 13 14 14 |
|||
11 z 12 z z 13 z 14 z z z z z |
|||
------ - ------ + --- - ------ - ------ + --- + --- + --- + --- |
|||
17 15 18 16 14 17 15 16 14 |
|||
a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 140}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[15, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 13 15 17 2 21 3 21 4 25 5 25 6 29 7 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
|||
29 8 33 9 33 10 37 11 37 12 41 13 41 14 |
|||
q t + q t + q t + q t + q t + q t + q t + |
|||
45 15 |
|||
q t</nowiki></pre></td></tr> |
|||
</table> |
</table> |
Revision as of 18:35, 26 August 2005
[[Image:T(5,4).{{{ext}}}|80px|link=T(5,4)]] |
[[Image:T(8,3).{{{ext}}}|80px|link=T(8,3)]] |
Visit T(15,2)'s page at Knotilus!
Visit T(15,2)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8 |
Gauss code | {-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7} |
Dowker-Thistlethwaite code | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(15,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 140}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | χ | |||||||||
45 | 1 | -1 | ||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||
35 | 0 | |||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||
31 | 0 | |||||||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||||
27 | 0 | |||||||||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||||||||
23 | 0 | |||||||||||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||||||||
19 | 0 | |||||||||||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||||||||
13 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[15, 2]] |
Out[2]= | 15 |
In[3]:= | PD[TorusKnot[15, 2]] |
Out[3]= | PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26],X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22],X[23, 9, 24, 8]] |
In[4]:= | GaussCode[TorusKnot[15, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[15, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[15, 2]][t] |
Out[6]= | -7 -6 -5 -4 -3 -2 1 2 3 4 5 |
In[7]:= | Conway[TorusKnot[15, 2]][z] |
Out[7]= | 2 4 6 8 10 12 14 1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]} |
Out[9]= | {15, 14} |
In[10]:= | J=Jones[TorusKnot[15, 2]][q] |
Out[10]= | 7 9 10 11 12 13 14 15 16 17 18 19 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[15, 2]][q] |
Out[12]= | 26 28 30 32 34 58 60 62 q + q + 2 q + q + q - q - q - q |
In[13]:= | Kauffman[TorusKnot[15, 2]][a, z] |
Out[13]= | 2 |
In[14]:= | {Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]} |
Out[14]= | {0, 140} |
In[15]:= | Kh[TorusKnot[15, 2]][q, t] |
Out[15]= | 13 15 17 2 21 3 21 4 25 5 25 6 29 7 |