10 94: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_94}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=94|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,7,-9,4,-1,2,-6,8,-7,3,-10,5,-4,6,-8,9,-3,10,-5/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-4</td  ><td width=6.66667%>-3</td  ><td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=6.66667%>5</td  ><td width=6.66667%>6</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> | |||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-3</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>2</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 94]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 94]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[2, 8, 3, 7], X[18, 12, 19, 11], X[14, 5, 15, 6],  | |||
|   X[20, 14, 1, 13], X[8, 15, 9, 16], X[10, 4, 11, 3], X[16, 9, 17, 10],  | |||
|   X[4, 17, 5, 18], X[12, 20, 13, 19]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 94]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9,  | |||
|   -3, 10, -5]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 94]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, -2, -2, 1, -2}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 94]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -4   4    9    14             2      3    4 | |||
| -15 - t   + -- - -- + -- + 14 t - 9 t  + 4 t  - t | |||
|              3    2   t | |||
|             t    t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 94]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8 | |||
| 1 - 2 z  - 5 z  - 4 z  - z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 94]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 94]], KnotSignature[Knot[10, 94]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{71, 2}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 94]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -3   3    6              2       3      4      5      6    7 | |||
| -8 + q   - -- + - + 11 q - 12 q  + 11 q  - 9 q  + 6 q  - 3 q  + q | |||
|             2   q | |||
|            q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 94]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -8    -6   2       2      4      6      8    10    14      16 | |||
| 1 + q   - q   + -- + 2 q  - 3 q  + 2 q  - 3 q  + q   - q   + 2 q   -  | |||
|                  4 | |||
|                 q | |||
|    18    20 | |||
|   q   + q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 94]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                              2      2      2       2 | |||
|     2    4    3 z   5 z   3 z            2   z    2 z    6 z    18 z | |||
| 3 + -- + -- - --- - --- - --- - a z - 7 z  - -- + ---- - ---- - ----- +  | |||
|      4    2    5     3     a                  8     6      4      2 | |||
|     a    a    a     a                        a     a      a      a | |||
|                3      3       3       3                     4      4 | |||
|      2  2   3 z    9 z    16 z    10 z         3       4   z    6 z | |||
|   2 a  z  - ---- + ---- + ----- + ----- + 6 a z  + 11 z  + -- - ---- +  | |||
|               7      5      3       a                       8     6 | |||
|              a      a      a                               a     a | |||
|       4       4                5       5       5       5 | |||
|   10 z    31 z       2  4   3 z    10 z    15 z    11 z         5 | |||
|   ----- + ----- - 3 a  z  + ---- - ----- - ----- - ----- - 9 a z  -  | |||
|     4       2                 7      5       3       a | |||
|    a       a                 a      a       a | |||
|              6      6       6              7      7 | |||
|       6   5 z    9 z    27 z     2  6   6 z    3 z         7      8 | |||
|   12 z  + ---- - ---- - ----- + a  z  + ---- + ---- + 3 a z  + 4 z  +  | |||
|             6      4      2               5      3 | |||
|            a      a      a               a      a | |||
|      8      8      9      9 | |||
|   5 z    9 z    2 z    2 z | |||
|   ---- + ---- + ---- + ---- | |||
|     4      2      3     a | |||
|    a      a      a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 94]], Vassiliev[3][Knot[10, 94]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 94]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         3     1       2       1       4      2      4    4 q | |||
| 7 q + 5 q  + ----- + ----- + ----- + ----- + ---- + --- + --- +  | |||
|               7  4    5  3    3  3    3  2      2   q t    t | |||
|              q  t    q  t    q  t    q  t    q t | |||
|      3        5        5  2      7  2      7  3      9  3      9  4 | |||
|   6 q  t + 6 q  t + 5 q  t  + 6 q  t  + 4 q  t  + 5 q  t  + 2 q  t  +  | |||
|      11  4    11  5      13  5    15  6 | |||
|   4 q   t  + q   t  + 2 q   t  + q   t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:44, 27 August 2005
|  |  | 
|   | Visit 10 94's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 94's page at Knotilus! Visit 10 94's page at the original Knot Atlas! | 10 94 Quick Notes | 
Knot presentations
| Planar diagram presentation | X6271 X2837 X18,12,19,11 X14,5,15,6 X20,14,1,13 X8,15,9,16 X10,4,11,3 X16,9,17,10 X4,17,5,18 X12,20,13,19 | 
| Gauss code | 1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9, -3, 10, -5 | 
| Dowker-Thistlethwaite code | 6 10 14 2 16 18 20 8 4 12 | 
| Conway Notation | [.30.2.2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 94"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 71, 2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (-2, -2) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 94. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | χ | |||||||||
| 15 | 1 | 1 | |||||||||||||||||||
| 13 | 2 | -2 | |||||||||||||||||||
| 11 | 4 | 1 | 3 | ||||||||||||||||||
| 9 | 5 | 2 | -3 | ||||||||||||||||||
| 7 | 6 | 4 | 2 | ||||||||||||||||||
| 5 | 6 | 5 | -1 | ||||||||||||||||||
| 3 | 5 | 6 | -1 | ||||||||||||||||||
| 1 | 4 | 7 | 3 | ||||||||||||||||||
| -1 | 2 | 4 | -2 | ||||||||||||||||||
| -3 | 1 | 4 | 3 | ||||||||||||||||||
| -5 | 2 | -2 | |||||||||||||||||||
| -7 | 1 | 1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 94]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 94]] | 
| Out[3]= | PD[X[6, 2, 7, 1], X[2, 8, 3, 7], X[18, 12, 19, 11], X[14, 5, 15, 6],X[20, 14, 1, 13], X[8, 15, 9, 16], X[10, 4, 11, 3], X[16, 9, 17, 10],X[4, 17, 5, 18], X[12, 20, 13, 19]] | 
| In[4]:= | GaussCode[Knot[10, 94]] | 
| Out[4]= | GaussCode[1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9, -3, 10, -5] | 
| In[5]:= | BR[Knot[10, 94]] | 
| Out[5]= | BR[3, {1, 1, 1, -2, 1, 1, -2, -2, 1, -2}] | 
| In[6]:= | alex = Alexander[Knot[10, 94]][t] | 
| Out[6]= | -4 4 9 14 2 3 4 | 
| In[7]:= | Conway[Knot[10, 94]][z] | 
| Out[7]= | 2 4 6 8 1 - 2 z - 5 z - 4 z - z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 94]} | 
| In[9]:= | {KnotDet[Knot[10, 94]], KnotSignature[Knot[10, 94]]} | 
| Out[9]= | {71, 2} | 
| In[10]:= | J=Jones[Knot[10, 94]][q] | 
| Out[10]= | -3 3 6 2 3 4 5 6 7 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 41], Knot[10, 94]} | 
| In[12]:= | A2Invariant[Knot[10, 94]][q] | 
| Out[12]= | -8 -6 2 2 4 6 8 10 14 16 | 
| In[13]:= | Kauffman[Knot[10, 94]][a, z] | 
| Out[13]= | 2 2 2 22 4 3 z 5 z 3 z 2 z 2 z 6 z 18 z | 
| In[14]:= | {Vassiliev[2][Knot[10, 94]], Vassiliev[3][Knot[10, 94]]} | 
| Out[14]= | {0, -2} | 
| In[15]:= | Kh[Knot[10, 94]][q, t] | 
| Out[15]= | 3 1 2 1 4 2 4 4 q | 


