10 126: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_126}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=126|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,9,10,-2,-5,7,-6,8,-9,3,-4,5,-7,6,-8,4/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], |
|||
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
|||
X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, |
|||
6, -8, 4]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 126]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 4 2 3 |
|||
-5 + t - -- + - + 4 t - 2 t + t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 126]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 5 z + 4 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 126]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 126]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -7 2 3 3 4 2 2 |
|||
-1 - q + q - -- + -- - -- + -- - -- + - |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 126]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 126]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -24 -22 2 -18 -16 -14 3 2 2 -6 -4 |
|||
-1 - q - q - --- - q + q + q + --- + --- + -- + q - q |
|||
20 12 10 8 |
|||
q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 |
|||
2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - |
|||
2 2 4 2 6 2 8 2 3 3 3 5 3 |
|||
4 a z - 16 a z - 11 a z + a z + a z + 11 a z + 16 a z + |
|||
7 3 9 3 2 4 4 4 6 4 8 4 |
|||
2 a z - 4 a z + 2 a z + 16 a z + 11 a z - 3 a z - |
|||
3 5 5 5 7 5 9 5 4 6 6 6 8 6 |
|||
5 a z - 9 a z - 3 a z + a z - 6 a z - 5 a z + a z + |
|||
3 7 5 7 7 7 4 8 6 8 |
|||
a z + 2 a z + a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 126]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 1 1 1 2 1 2 2 1 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
|||
3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 |
|||
q q t q t q t q t q t q t q t |
|||
2 2 2 |
|||
----- + ----- + ---- + q t |
|||
7 2 5 2 3 |
|||
q t q t q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:46, 27 August 2005
|
|
![]() |
Visit 10 126's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 126's page at Knotilus! Visit 10 126's page at the original Knot Atlas! |
10_126 is also known as the pretzel knot P(-5,3,2). |
10 126 Further Notes and Views
Knot presentations
Planar diagram presentation | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -6 -20 -10 -12 |
Conway Notation | [41,3,2-] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-2 t^2+4 t-5+4 t^{-1} -2 t^{-2} + t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+4 z^4+5 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 19, -2 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-4 z^2 a^6-4 a^6+z^6 a^4+6 z^4 a^4+12 z^2 a^4+7 a^4-z^4 a^2-3 z^2 a^2-2 a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-4 z^3 a^9+3 z a^9+z^6 a^8-3 z^4 a^8+z^2 a^8+z^7 a^7-3 z^5 a^7+2 z^3 a^7-z a^7+z^8 a^6-5 z^6 a^6+11 z^4 a^6-11 z^2 a^6+4 a^6+2 z^7 a^5-9 z^5 a^5+16 z^3 a^5-8 z a^5+z^8 a^4-6 z^6 a^4+16 z^4 a^4-16 z^2 a^4+7 a^4+z^7 a^3-5 z^5 a^3+11 z^3 a^3-6 z a^3+2 z^4 a^2-4 z^2 a^2+2 a^2+z^3 a-2 z a} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}-q^{22}-2 q^{20}-q^{18}+q^{16}+q^{14}+3 q^{12}+2 q^{10}+2 q^8+q^6-q^4-1} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}+q^{124}-q^{122}+q^{120}-q^{116}+2 q^{114}-2 q^{112}+2 q^{110}-2 q^{108}-3 q^{102}+4 q^{100}-5 q^{98}+q^{96}-q^{94}-4 q^{92}+3 q^{90}-5 q^{88}-q^{86}+q^{84}-5 q^{82}+2 q^{80}-2 q^{78}-4 q^{76}+6 q^{74}-5 q^{72}+3 q^{70}-3 q^{66}+6 q^{64}-4 q^{62}+5 q^{60}+2 q^{56}+4 q^{54}-2 q^{52}+7 q^{50}-q^{48}+3 q^{46}+3 q^{44}-2 q^{42}+5 q^{40}+2 q^{38}-2 q^{36}+6 q^{34}-3 q^{32}+q^{30}+2 q^{28}-5 q^{26}+5 q^{24}-4 q^{22}+q^{20}-3 q^{16}+2 q^{14}-2 q^{12}-q^8-q^4-q^2+ q^{-4} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{17}-q^{13}+q^{11}+q^7+2 q^5+q- q^{-1} } |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{93}+q^{83}+q^{81}-q^{77}+q^{75}+3 q^{73}+q^{71}-3 q^{69}-3 q^{67}+2 q^{65}+4 q^{63}-6 q^{59}-3 q^{57}+3 q^{55}+4 q^{53}-4 q^{51}-5 q^{49}+q^{47}+4 q^{45}-2 q^{43}-3 q^{41}+3 q^{37}-q^{31}+q^{29}+4 q^{27}-q^{25}-4 q^{23}+7 q^{19}+2 q^{17}-4 q^{15}-3 q^{13}+5 q^{11}+4 q^9-q^7-3 q^5+2 q+2 q^{-1} - q^{-3} -2 q^{-5} - q^{-7} + q^{-11} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{225}+q^{217}+q^{215}-q^{207}+2 q^{203}+q^{201}-2 q^{195}-3 q^{193}-q^{191}+2 q^{189}+3 q^{187}+3 q^{185}-5 q^{181}-8 q^{179}-5 q^{177}+q^{175}+9 q^{173}+11 q^{171}+6 q^{169}-5 q^{167}-15 q^{165}-16 q^{163}-4 q^{161}+12 q^{159}+23 q^{157}+20 q^{155}+3 q^{153}-20 q^{151}-32 q^{149}-21 q^{147}+7 q^{145}+33 q^{143}+40 q^{141}+15 q^{139}-25 q^{137}-47 q^{135}-34 q^{133}+6 q^{131}+45 q^{129}+50 q^{127}+11 q^{125}-35 q^{123}-53 q^{121}-27 q^{119}+22 q^{117}+49 q^{115}+32 q^{113}-8 q^{111}-38 q^{109}-31 q^{107}+2 q^{105}+26 q^{103}+22 q^{101}+4 q^{99}-16 q^{97}-16 q^{95}-2 q^{93}+8 q^{91}+6 q^{89}+q^{87}-4 q^{85}-6 q^{83}-q^{81}+3 q^{79}+q^{75}-3 q^{73}-8 q^{71}-8 q^{69}+q^{67}+14 q^{65}+14 q^{63}+3 q^{61}-16 q^{59}-28 q^{57}-12 q^{55}+22 q^{53}+40 q^{51}+26 q^{49}-14 q^{47}-48 q^{45}-41 q^{43}+7 q^{41}+49 q^{39}+52 q^{37}+12 q^{35}-39 q^{33}-55 q^{31}-26 q^{29}+20 q^{27}+49 q^{25}+40 q^{23}+2 q^{21}-31 q^{19}-36 q^{17}-19 q^{15}+11 q^{13}+29 q^{11}+24 q^9+6 q^7-12 q^5-20 q^3-15 q- q^{-1} +11 q^{-3} +12 q^{-5} +7 q^{-7} - q^{-9} -7 q^{-11} -8 q^{-13} -3 q^{-15} +2 q^{-17} +3 q^{-19} +3 q^{-21} + q^{-23} - q^{-25} - q^{-27} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{312}-q^{304}-q^{302}-q^{300}+q^{298}+q^{292}-q^{288}-2 q^{286}+q^{284}+q^{282}+2 q^{278}+q^{276}-3 q^{272}-q^{270}+4 q^{264}+5 q^{262}+4 q^{260}-3 q^{258}-4 q^{256}-6 q^{254}-8 q^{252}-2 q^{250}+6 q^{248}+14 q^{246}+10 q^{244}+7 q^{242}-4 q^{240}-18 q^{238}-24 q^{236}-18 q^{234}+14 q^{230}+34 q^{228}+34 q^{226}+15 q^{224}-14 q^{222}-39 q^{220}-48 q^{218}-42 q^{216}+q^{214}+43 q^{212}+70 q^{210}+64 q^{208}+25 q^{206}-36 q^{204}-93 q^{202}-93 q^{200}-49 q^{198}+30 q^{196}+100 q^{194}+127 q^{192}+79 q^{190}-25 q^{188}-113 q^{186}-146 q^{184}-96 q^{182}+11 q^{180}+127 q^{178}+166 q^{176}+100 q^{174}-21 q^{172}-133 q^{170}-165 q^{168}-98 q^{166}+39 q^{164}+142 q^{162}+148 q^{160}+65 q^{158}-53 q^{156}-130 q^{154}-120 q^{152}-26 q^{150}+69 q^{148}+105 q^{146}+72 q^{144}-60 q^{140}-73 q^{138}-29 q^{136}+20 q^{134}+43 q^{132}+34 q^{130}+8 q^{128}-15 q^{126}-25 q^{124}-11 q^{122}+3 q^{120}+8 q^{118}+5 q^{116}-q^{114}-5 q^{112}-6 q^{110}-2 q^{108}+3 q^{106}+7 q^{104}+4 q^{102}-q^{100}-9 q^{98}-16 q^{96}-20 q^{94}-7 q^{92}+24 q^{90}+34 q^{88}+31 q^{86}+2 q^{84}-39 q^{82}-70 q^{80}-52 q^{78}+19 q^{76}+79 q^{74}+104 q^{72}+57 q^{70}-38 q^{68}-128 q^{66}-135 q^{64}-42 q^{62}+77 q^{60}+161 q^{58}+142 q^{56}+32 q^{54}-110 q^{52}-179 q^{50}-131 q^{48}-12 q^{46}+117 q^{44}+171 q^{42}+125 q^{40}+2 q^{38}-108 q^{36}-143 q^{34}-105 q^{32}-10 q^{30}+83 q^{28}+123 q^{26}+88 q^{24}+18 q^{22}-47 q^{20}-87 q^{18}-77 q^{16}-27 q^{14}+27 q^{12}+54 q^{10}+55 q^8+35 q^6-3 q^4-33 q^2-39-27 q^{-2} -9 q^{-4} +9 q^{-6} +24 q^{-8} +23 q^{-10} +11 q^{-12} - q^{-14} -10 q^{-16} -13 q^{-18} -12 q^{-20} -3 q^{-22} +3 q^{-24} +5 q^{-26} +5 q^{-28} +4 q^{-30} +2 q^{-32} -2 q^{-34} - q^{-36} - q^{-38} - q^{-40} - q^{-42} + q^{-46} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}-q^{22}-2 q^{20}-q^{18}+q^{16}+q^{14}+3 q^{12}+2 q^{10}+2 q^8+q^6-q^4-1} |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}+2 q^{64}-2 q^{62}+4 q^{60}-4 q^{58}+4 q^{56}-8 q^{54}+7 q^{52}-8 q^{50}+8 q^{48}-6 q^{46}+q^{44}+2 q^{42}-10 q^{40}+10 q^{38}-18 q^{36}+14 q^{34}-18 q^{32}+12 q^{30}-13 q^{28}+10 q^{26}-2 q^{24}+6 q^{22}+10 q^{20}-2 q^{18}+16 q^{16}-6 q^{14}+10 q^{12}-8 q^{10}+2 q^8-4 q^6-q^4-2 q^2+ q^{-4} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}+q^{60}+2 q^{58}+2 q^{56}+2 q^{54}-q^{50}-3 q^{48}-4 q^{46}-7 q^{44}-6 q^{42}-3 q^{40}-2 q^{38}+q^{34}+4 q^{32}+3 q^{30}+4 q^{28}+4 q^{26}+5 q^{24}+2 q^{22}+3 q^{20}+q^{18}-q^{16}-q^{14}-q^8+q^4-1} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}+q^{50}+q^{48}-3 q^{40}-q^{38}-2 q^{36}-6 q^{34}-4 q^{32}-4 q^{30}-3 q^{28}+5 q^{24}+7 q^{22}+9 q^{20}+7 q^{18}+7 q^{16}+q^{14}-2 q^{12}-q^{10}-4 q^8-4 q^6+ q^{-2} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{31}-q^{29}-3 q^{27}-2 q^{25}-2 q^{23}+q^{21}+2 q^{19}+4 q^{17}+4 q^{15}+3 q^{13}+2 q^{11}-2 q^5-q} |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}+q^{66}+2 q^{64}+3 q^{62}+3 q^{60}+2 q^{58}+3 q^{56}-4 q^{52}-6 q^{50}-8 q^{48}-12 q^{46}-15 q^{44}-12 q^{42}-9 q^{40}-6 q^{38}+q^{36}+11 q^{34}+14 q^{32}+18 q^{30}+21 q^{28}+17 q^{26}+10 q^{24}+5 q^{22}-q^{20}-7 q^{18}-10 q^{16}-7 q^{14}-5 q^{12}-4 q^{10}-q^8+2 q^6+q^4+q^2+1} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{38}-q^{36}-3 q^{34}-3 q^{32}-3 q^{30}-2 q^{28}+q^{26}+2 q^{24}+5 q^{22}+5 q^{20}+5 q^{18}+3 q^{16}+2 q^{14}-q^{10}-q^8-2 q^6-q^2} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}-q^{50}+q^{48}-2 q^{46}+2 q^{44}-2 q^{42}+q^{40}-q^{38}-2 q^{32}+2 q^{30}-3 q^{28}+4 q^{26}-3 q^{24}+5 q^{22}-q^{20}+3 q^{18}+q^{16}+q^{14}+2 q^{12}-q^{10}+2 q^8-2 q^6+2 q^4-2 q^2- q^{-2} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}+q^{80}+q^{78}-q^{74}+q^{70}+q^{68}-2 q^{66}-3 q^{64}-q^{62}+q^{60}-q^{58}-4 q^{56}-3 q^{54}-q^{52}-q^{50}-2 q^{48}-2 q^{46}+2 q^{42}+q^{40}+q^{38}+2 q^{36}+5 q^{34}+4 q^{32}+3 q^{30}+q^{28}+4 q^{26}+3 q^{24}+q^{22}-2 q^{20}+q^{16}-3 q^{12}-3 q^{10}-q^8+q^6-q^2+ q^{-4} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}+q^{70}+2 q^{66}-q^{64}+q^{62}-2 q^{60}+q^{58}-2 q^{56}-2 q^{52}-2 q^{50}-3 q^{48}-6 q^{46}-4 q^{44}-7 q^{42}-3 q^{40}-6 q^{38}+3 q^{36}+q^{34}+10 q^{32}+7 q^{30}+12 q^{28}+8 q^{26}+9 q^{24}+5 q^{22}+q^{20}-q^{18}-4 q^{16}-2 q^{14}-5 q^{12}-2 q^{10}-4 q^8+q^6-q^4+q^2+ q^{-2} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}+q^{124}-q^{122}+q^{120}-q^{116}+2 q^{114}-2 q^{112}+2 q^{110}-2 q^{108}-3 q^{102}+4 q^{100}-5 q^{98}+q^{96}-q^{94}-4 q^{92}+3 q^{90}-5 q^{88}-q^{86}+q^{84}-5 q^{82}+2 q^{80}-2 q^{78}-4 q^{76}+6 q^{74}-5 q^{72}+3 q^{70}-3 q^{66}+6 q^{64}-4 q^{62}+5 q^{60}+2 q^{56}+4 q^{54}-2 q^{52}+7 q^{50}-q^{48}+3 q^{46}+3 q^{44}-2 q^{42}+5 q^{40}+2 q^{38}-2 q^{36}+6 q^{34}-3 q^{32}+q^{30}+2 q^{28}-5 q^{26}+5 q^{24}-4 q^{22}+q^{20}-3 q^{16}+2 q^{14}-2 q^{12}-q^8-q^4-q^2+ q^{-4} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-2 t^2+4 t-5+4 t^{-1} -2 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+4 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^6-4 z^2 a^6-4 a^6+z^6 a^4+6 z^4 a^4+12 z^2 a^4+7 a^4-z^4 a^2-3 z^2 a^2-2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-4 z^3 a^9+3 z a^9+z^6 a^8-3 z^4 a^8+z^2 a^8+z^7 a^7-3 z^5 a^7+2 z^3 a^7-z a^7+z^8 a^6-5 z^6 a^6+11 z^4 a^6-11 z^2 a^6+4 a^6+2 z^7 a^5-9 z^5 a^5+16 z^3 a^5-8 z a^5+z^8 a^4-6 z^6 a^4+16 z^4 a^4-16 z^2 a^4+7 a^4+z^7 a^3-5 z^5 a^3+11 z^3 a^3-6 z a^3+2 z^4 a^2-4 z^2 a^2+2 a^2+z^3 a-2 z a} |
Vassiliev invariants
V2 and V3: | (5, -9) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | χ | |||||||||
1 | 1 | -1 | |||||||||||||||||
-1 | 1 | 1 | |||||||||||||||||
-3 | 2 | 2 | 0 | ||||||||||||||||
-5 | 2 | 2 | |||||||||||||||||
-7 | 1 | 2 | 1 | ||||||||||||||||
-9 | 2 | 2 | 0 | ||||||||||||||||
-11 | 1 | 1 | |||||||||||||||||
-13 | 1 | 2 | -1 | ||||||||||||||||
-15 | 0 | ||||||||||||||||||
-17 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 126]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 126]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1],X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]] |
In[4]:= | GaussCode[Knot[10, 126]] |
Out[4]= | GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4] |
In[5]:= | BR[Knot[10, 126]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}] |
In[6]:= | alex = Alexander[Knot[10, 126]][t] |
Out[6]= | -3 2 4 2 3 |
In[7]:= | Conway[Knot[10, 126]][z] |
Out[7]= | 2 4 6 1 + 5 z + 4 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 126]} |
In[9]:= | {KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]} |
Out[9]= | {19, -2} |
In[10]:= | J=Jones[Knot[10, 126]][q] |
Out[10]= | -8 -7 2 3 3 4 2 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 126]} |
In[12]:= | A2Invariant[Knot[10, 126]][q] |
Out[12]= | -24 -22 2 -18 -16 -14 3 2 2 -6 -4 |
In[13]:= | Kauffman[Knot[10, 126]][a, z] |
Out[13]= | 2 4 6 3 5 7 9 |
In[14]:= | {Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]} |
Out[14]= | {0, -9} |
In[15]:= | Kh[Knot[10, 126]][q, t] |
Out[15]= | 2 1 1 1 2 1 2 2 1 |