10 71: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_71}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=71|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,9,-3,4,-5,3,-7,8,-9,6,-8,7/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
|||
X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1], |
|||
X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, |
|||
6, -8, 7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 71]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 71]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 18 2 3 |
|||
25 - t + -- - -- - 18 t + 7 t - t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 71]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z + z - z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 71], Knot[11, NonAlternating, 156], |
|||
Knot[11, NonAlternating, 179]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{77, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 71]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 6 10 12 2 3 4 5 |
|||
13 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q |
|||
4 3 2 q |
|||
q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 71], Knot[10, 104]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 71]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 2 3 -6 -4 2 2 4 6 8 |
|||
-3 - q + q - --- + -- + q - q + -- + 2 q - q + q + 3 q - |
|||
10 8 2 |
|||
q q q |
|||
10 12 16 |
|||
2 q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 71]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 2 4 z z z 3 5 2 |
|||
-3 - a - -- - 3 a - a + -- + -- - - - a z + a z + a z + 12 z + |
|||
2 5 3 a |
|||
a a a |
|||
2 2 3 3 |
|||
4 z 10 z 2 2 4 2 2 z 7 z 3 5 3 |
|||
---- + ----- + 10 a z + 4 a z - ---- + ---- + 7 a z - 2 a z - |
|||
4 2 5 a |
|||
a a a |
|||
4 4 5 5 5 |
|||
4 6 z 12 z 2 4 4 4 z 5 z 15 z |
|||
12 z - ---- - ----- - 12 a z - 6 a z + -- - ---- - ----- - |
|||
4 2 5 3 a |
|||
a a a a |
|||
6 6 |
|||
5 3 5 5 5 6 3 z 2 z 2 6 4 6 |
|||
15 a z - 5 a z + a z - 2 z + ---- + ---- + 2 a z + 3 a z + |
|||
4 2 |
|||
a a |
|||
7 7 8 9 |
|||
4 z 8 z 7 3 7 8 3 z 2 8 z 9 |
|||
---- + ---- + 8 a z + 4 a z + 6 z + ---- + 3 a z + -- + a z |
|||
3 a 2 a |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 71]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 6 4 |
|||
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
|||
q t q t q t q t q t q t q t |
|||
6 6 3 3 2 5 2 5 3 7 3 |
|||
---- + --- + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + 4 q t + |
|||
3 q t |
|||
q t |
|||
7 4 9 4 11 5 |
|||
q t + 2 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:46, 27 August 2005
|
|
|
|
Visit 10 71's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 71's page at Knotilus! Visit 10 71's page at the original Knot Atlas! |
10 71 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X9,19,10,18 X15,20,16,1 X19,16,20,17 X17,11,18,10 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 12 2 18 14 6 20 10 16 |
| Conway Notation | [22,21,2+] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6+z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 77, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6+2 a^2 z^4+2 z^4 a^{-2} -3 z^4-a^4 z^2+4 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -5 z^2-a^4+3 a^2+3 a^{-2} - a^{-4} -3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a z^9+z^9 a^{-1} +3 a^2 z^8+3 z^8 a^{-2} +6 z^8+4 a^3 z^7+8 a z^7+8 z^7 a^{-1} +4 z^7 a^{-3} +3 a^4 z^6+2 a^2 z^6+2 z^6 a^{-2} +3 z^6 a^{-4} -2 z^6+a^5 z^5-5 a^3 z^5-15 a z^5-15 z^5 a^{-1} -5 z^5 a^{-3} +z^5 a^{-5} -6 a^4 z^4-12 a^2 z^4-12 z^4 a^{-2} -6 z^4 a^{-4} -12 z^4-2 a^5 z^3+7 a z^3+7 z^3 a^{-1} -2 z^3 a^{-5} +4 a^4 z^2+10 a^2 z^2+10 z^2 a^{-2} +4 z^2 a^{-4} +12 z^2+a^5 z+a^3 z-a z-z a^{-1} +z a^{-3} +z a^{-5} -a^4-3 a^2-3 a^{-2} - a^{-4} -3 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{16}+q^{12}-2 q^{10}+3 q^8+q^6-q^4+2 q^2-3+2 q^{-2} - q^{-4} + q^{-6} +3 q^{-8} -2 q^{-10} + q^{-12} - q^{-16} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+8 q^{72}-7 q^{70}-2 q^{68}+16 q^{66}-32 q^{64}+47 q^{62}-52 q^{60}+36 q^{58}-3 q^{56}-48 q^{54}+102 q^{52}-137 q^{50}+132 q^{48}-84 q^{46}-6 q^{44}+105 q^{42}-179 q^{40}+206 q^{38}-155 q^{36}+56 q^{34}+61 q^{32}-147 q^{30}+164 q^{28}-107 q^{26}+10 q^{24}+90 q^{22}-135 q^{20}+110 q^{18}-14 q^{16}-110 q^{14}+208 q^{12}-235 q^{10}+166 q^8-34 q^6-128 q^4+254 q^2-299+253 q^{-2} -128 q^{-4} -32 q^{-6} +166 q^{-8} -233 q^{-10} +206 q^{-12} -108 q^{-14} -12 q^{-16} +109 q^{-18} -135 q^{-20} +90 q^{-22} +10 q^{-24} -107 q^{-26} +164 q^{-28} -150 q^{-30} +63 q^{-32} +55 q^{-34} -156 q^{-36} +206 q^{-38} -180 q^{-40} +106 q^{-42} -6 q^{-44} -84 q^{-46} +132 q^{-48} -136 q^{-50} +102 q^{-52} -47 q^{-54} -4 q^{-56} +36 q^{-58} -51 q^{-60} +46 q^{-62} -32 q^{-64} +16 q^{-66} -2 q^{-68} -7 q^{-70} +8 q^{-72} -8 q^{-74} +5 q^{-76} -2 q^{-78} + q^{-80} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{11}+2 q^9-3 q^7+4 q^5-2 q^3+q+ q^{-1} -2 q^{-3} +4 q^{-5} -3 q^{-7} +2 q^{-9} - q^{-11} }[/math] |
| 2 | [math]\displaystyle{ q^{32}-2 q^{30}-q^{28}+7 q^{26}-7 q^{24}-7 q^{22}+21 q^{20}-9 q^{18}-22 q^{16}+30 q^{14}-30 q^{10}+21 q^8+11 q^6-20 q^4+q^2+15+ q^{-2} -20 q^{-4} +11 q^{-6} +21 q^{-8} -30 q^{-10} +30 q^{-14} -22 q^{-16} -9 q^{-18} +21 q^{-20} -7 q^{-22} -7 q^{-24} +7 q^{-26} - q^{-28} -2 q^{-30} + q^{-32} }[/math] |
| 3 | [math]\displaystyle{ -q^{63}+2 q^{61}+q^{59}-3 q^{57}-4 q^{55}+7 q^{53}+10 q^{51}-15 q^{49}-21 q^{47}+21 q^{45}+44 q^{43}-23 q^{41}-77 q^{39}+16 q^{37}+115 q^{35}+8 q^{33}-148 q^{31}-54 q^{29}+171 q^{27}+99 q^{25}-165 q^{23}-144 q^{21}+138 q^{19}+175 q^{17}-96 q^{15}-182 q^{13}+46 q^{11}+168 q^9+7 q^7-138 q^5-56 q^3+101 q+101 q^{-1} -56 q^{-3} -138 q^{-5} +7 q^{-7} +167 q^{-9} +46 q^{-11} -180 q^{-13} -95 q^{-15} +174 q^{-17} +137 q^{-19} -144 q^{-21} -166 q^{-23} +99 q^{-25} +172 q^{-27} -54 q^{-29} -150 q^{-31} +8 q^{-33} +119 q^{-35} +17 q^{-37} -79 q^{-39} -25 q^{-41} +44 q^{-43} +22 q^{-45} -21 q^{-47} -15 q^{-49} +10 q^{-51} +7 q^{-53} -4 q^{-55} -3 q^{-57} + q^{-59} +2 q^{-61} - q^{-63} }[/math] |
| 4 | [math]\displaystyle{ q^{104}-2 q^{102}-q^{100}+3 q^{98}+4 q^{94}-10 q^{92}-5 q^{90}+16 q^{88}+6 q^{86}+11 q^{84}-45 q^{82}-35 q^{80}+50 q^{78}+61 q^{76}+63 q^{74}-128 q^{72}-170 q^{70}+41 q^{68}+205 q^{66}+292 q^{64}-168 q^{62}-477 q^{60}-208 q^{58}+306 q^{56}+779 q^{54}+104 q^{52}-753 q^{50}-794 q^{48}+37 q^{46}+1242 q^{44}+765 q^{42}-599 q^{40}-1349 q^{38}-638 q^{36}+1194 q^{34}+1370 q^{32}+24 q^{30}-1377 q^{28}-1238 q^{26}+621 q^{24}+1436 q^{22}+642 q^{20}-871 q^{18}-1332 q^{16}-66 q^{14}+999 q^{12}+932 q^{10}-205 q^8-1027 q^6-598 q^4+403 q^2+976+409 q^{-2} -588 q^{-4} -1021 q^{-6} -209 q^{-8} +915 q^{-10} +983 q^{-12} -62 q^{-14} -1311 q^{-16} -851 q^{-18} +637 q^{-20} +1410 q^{-22} +603 q^{-24} -1234 q^{-26} -1355 q^{-28} +44 q^{-30} +1375 q^{-32} +1184 q^{-34} -661 q^{-36} -1371 q^{-38} -596 q^{-40} +798 q^{-42} +1277 q^{-44} +35 q^{-46} -841 q^{-48} -795 q^{-50} +113 q^{-52} +829 q^{-54} +344 q^{-56} -223 q^{-58} -520 q^{-60} -192 q^{-62} +306 q^{-64} +235 q^{-66} +53 q^{-68} -179 q^{-70} -143 q^{-72} +57 q^{-74} +65 q^{-76} +55 q^{-78} -33 q^{-80} -46 q^{-82} +10 q^{-84} +6 q^{-86} +16 q^{-88} -5 q^{-90} -10 q^{-92} +4 q^{-94} +3 q^{-98} - q^{-100} -2 q^{-102} + q^{-104} }[/math] |
| 5 | [math]\displaystyle{ -q^{155}+2 q^{153}+q^{151}-3 q^{149}-q^{143}+5 q^{141}+4 q^{139}-12 q^{137}-9 q^{135}+7 q^{133}+17 q^{131}+24 q^{129}+2 q^{127}-49 q^{125}-75 q^{123}-12 q^{121}+101 q^{119}+158 q^{117}+78 q^{115}-145 q^{113}-337 q^{111}-254 q^{109}+171 q^{107}+604 q^{105}+589 q^{103}-39 q^{101}-912 q^{99}-1202 q^{97}-373 q^{95}+1165 q^{93}+2062 q^{91}+1214 q^{89}-1099 q^{87}-3064 q^{85}-2613 q^{83}+473 q^{81}+3942 q^{79}+4493 q^{77}+902 q^{75}-4300 q^{73}-6533 q^{71}-3114 q^{69}+3789 q^{67}+8352 q^{65}+5868 q^{63}-2305 q^{61}-9333 q^{59}-8700 q^{57}-148 q^{55}+9257 q^{53}+11041 q^{51}+3042 q^{49}-8010 q^{47}-12339 q^{45}-5899 q^{43}+5830 q^{41}+12446 q^{39}+8135 q^{37}-3201 q^{35}-11407 q^{33}-9408 q^{31}+579 q^{29}+9517 q^{27}+9738 q^{25}+1643 q^{23}-7232 q^{21}-9264 q^{19}-3313 q^{17}+4893 q^{15}+8320 q^{13}+4522 q^{11}-2747 q^9-7229 q^7-5426 q^5+827 q^3+6187 q+6247 q^{-1} +985 q^{-3} -5254 q^{-5} -7142 q^{-7} -2811 q^{-9} +4318 q^{-11} +8093 q^{-13} +4802 q^{-15} -3177 q^{-17} -8965 q^{-19} -6968 q^{-21} +1664 q^{-23} +9472 q^{-25} +9135 q^{-27} +357 q^{-29} -9294 q^{-31} -11025 q^{-33} -2813 q^{-35} +8255 q^{-37} +12209 q^{-39} +5389 q^{-41} -6250 q^{-43} -12367 q^{-45} -7686 q^{-47} +3530 q^{-49} +11371 q^{-51} +9196 q^{-53} -591 q^{-55} -9250 q^{-57} -9606 q^{-59} -2079 q^{-61} +6469 q^{-63} +8899 q^{-65} +3873 q^{-67} -3574 q^{-69} -7197 q^{-71} -4670 q^{-73} +1100 q^{-75} +5092 q^{-77} +4462 q^{-79} +541 q^{-81} -3006 q^{-83} -3577 q^{-85} -1341 q^{-87} +1376 q^{-89} +2443 q^{-91} +1448 q^{-93} -362 q^{-95} -1411 q^{-97} -1141 q^{-99} -124 q^{-101} +664 q^{-103} +741 q^{-105} +256 q^{-107} -257 q^{-109} -396 q^{-111} -201 q^{-113} +61 q^{-115} +174 q^{-117} +125 q^{-119} + q^{-121} -75 q^{-123} -56 q^{-125} -3 q^{-127} +23 q^{-129} +18 q^{-131} +8 q^{-133} -9 q^{-135} -12 q^{-137} +4 q^{-139} +5 q^{-141} - q^{-143} -3 q^{-149} + q^{-151} +2 q^{-153} - q^{-155} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{16}+q^{12}-2 q^{10}+3 q^8+q^6-q^4+2 q^2-3+2 q^{-2} - q^{-4} + q^{-6} +3 q^{-8} -2 q^{-10} + q^{-12} - q^{-16} }[/math] |
| 2,0 | [math]\displaystyle{ q^{42}-2 q^{38}-q^{36}+3 q^{34}+2 q^{32}-6 q^{30}-3 q^{28}+10 q^{26}+2 q^{24}-13 q^{22}-3 q^{20}+15 q^{18}+5 q^{16}-17 q^{14}+2 q^{12}+14 q^{10}-6 q^8-10 q^6+6 q^4+4 q^2-6+6 q^{-2} +9 q^{-4} -6 q^{-6} -4 q^{-8} +14 q^{-10} -19 q^{-14} +3 q^{-16} +14 q^{-18} -4 q^{-20} -12 q^{-22} +4 q^{-24} +11 q^{-26} -3 q^{-28} -7 q^{-30} +2 q^{-32} +3 q^{-34} - q^{-36} -2 q^{-38} + q^{-42} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{34}-2 q^{32}+q^{30}+4 q^{28}-9 q^{26}+2 q^{24}+11 q^{22}-19 q^{20}+3 q^{18}+21 q^{16}-23 q^{14}+3 q^{12}+23 q^{10}-16 q^8-4 q^6+13 q^4-2 q^2-8-2 q^{-2} +13 q^{-4} -4 q^{-6} -16 q^{-8} +23 q^{-10} +3 q^{-12} -23 q^{-14} +21 q^{-16} +3 q^{-18} -19 q^{-20} +11 q^{-22} +2 q^{-24} -9 q^{-26} +4 q^{-28} + q^{-30} -2 q^{-32} + q^{-34} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{21}-q^{17}+q^{15}-2 q^{13}+4 q^{11}+3 q^7-q^5+q^3-2 q-2 q^{-1} + q^{-3} - q^{-5} +3 q^{-7} +4 q^{-11} -2 q^{-13} + q^{-15} - q^{-17} - q^{-21} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{34}+2 q^{32}-5 q^{30}+8 q^{28}-13 q^{26}+18 q^{24}-23 q^{22}+27 q^{20}-27 q^{18}+25 q^{16}-17 q^{14}+9 q^{12}+5 q^{10}-18 q^8+32 q^6-43 q^4+50 q^2-54+50 q^{-2} -43 q^{-4} +32 q^{-6} -18 q^{-8} +5 q^{-10} +9 q^{-12} -17 q^{-14} +25 q^{-16} -27 q^{-18} +27 q^{-20} -23 q^{-22} +18 q^{-24} -13 q^{-26} +8 q^{-28} -5 q^{-30} +2 q^{-32} - q^{-34} }[/math] |
| 1,0 | [math]\displaystyle{ q^{56}-2 q^{52}-2 q^{50}+3 q^{48}+6 q^{46}-q^{44}-11 q^{42}-7 q^{40}+11 q^{38}+17 q^{36}-4 q^{34}-25 q^{32}-10 q^{30}+23 q^{28}+24 q^{26}-12 q^{24}-29 q^{22}-2 q^{20}+28 q^{18}+13 q^{16}-19 q^{14}-17 q^{12}+12 q^{10}+18 q^8-6 q^6-18 q^4+2 q^2+19+2 q^{-2} -18 q^{-4} -6 q^{-6} +18 q^{-8} +12 q^{-10} -17 q^{-12} -19 q^{-14} +13 q^{-16} +28 q^{-18} -2 q^{-20} -29 q^{-22} -12 q^{-24} +24 q^{-26} +23 q^{-28} -10 q^{-30} -25 q^{-32} -4 q^{-34} +17 q^{-36} +11 q^{-38} -7 q^{-40} -11 q^{-42} - q^{-44} +6 q^{-46} +3 q^{-48} -2 q^{-50} -2 q^{-52} + q^{-56} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+8 q^{72}-7 q^{70}-2 q^{68}+16 q^{66}-32 q^{64}+47 q^{62}-52 q^{60}+36 q^{58}-3 q^{56}-48 q^{54}+102 q^{52}-137 q^{50}+132 q^{48}-84 q^{46}-6 q^{44}+105 q^{42}-179 q^{40}+206 q^{38}-155 q^{36}+56 q^{34}+61 q^{32}-147 q^{30}+164 q^{28}-107 q^{26}+10 q^{24}+90 q^{22}-135 q^{20}+110 q^{18}-14 q^{16}-110 q^{14}+208 q^{12}-235 q^{10}+166 q^8-34 q^6-128 q^4+254 q^2-299+253 q^{-2} -128 q^{-4} -32 q^{-6} +166 q^{-8} -233 q^{-10} +206 q^{-12} -108 q^{-14} -12 q^{-16} +109 q^{-18} -135 q^{-20} +90 q^{-22} +10 q^{-24} -107 q^{-26} +164 q^{-28} -150 q^{-30} +63 q^{-32} +55 q^{-34} -156 q^{-36} +206 q^{-38} -180 q^{-40} +106 q^{-42} -6 q^{-44} -84 q^{-46} +132 q^{-48} -136 q^{-50} +102 q^{-52} -47 q^{-54} -4 q^{-56} +36 q^{-58} -51 q^{-60} +46 q^{-62} -32 q^{-64} +16 q^{-66} -2 q^{-68} -7 q^{-70} +8 q^{-72} -8 q^{-74} +5 q^{-76} -2 q^{-78} + q^{-80} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 71"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6+z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 77, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+3 q^4-6 q^3+10 q^2-12 q+13-12 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6+2 a^2 z^4+2 z^4 a^{-2} -3 z^4-a^4 z^2+4 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -5 z^2-a^4+3 a^2+3 a^{-2} - a^{-4} -3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a z^9+z^9 a^{-1} +3 a^2 z^8+3 z^8 a^{-2} +6 z^8+4 a^3 z^7+8 a z^7+8 z^7 a^{-1} +4 z^7 a^{-3} +3 a^4 z^6+2 a^2 z^6+2 z^6 a^{-2} +3 z^6 a^{-4} -2 z^6+a^5 z^5-5 a^3 z^5-15 a z^5-15 z^5 a^{-1} -5 z^5 a^{-3} +z^5 a^{-5} -6 a^4 z^4-12 a^2 z^4-12 z^4 a^{-2} -6 z^4 a^{-4} -12 z^4-2 a^5 z^3+7 a z^3+7 z^3 a^{-1} -2 z^3 a^{-5} +4 a^4 z^2+10 a^2 z^2+10 z^2 a^{-2} +4 z^2 a^{-4} +12 z^2+a^5 z+a^3 z-a z-z a^{-1} +z a^{-3} +z a^{-5} -a^4-3 a^2-3 a^{-2} - a^{-4} -3 }[/math] |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 10 71. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | χ | |||||||||
| 11 | 1 | -1 | |||||||||||||||||||
| 9 | 2 | 2 | |||||||||||||||||||
| 7 | 4 | 1 | -3 | ||||||||||||||||||
| 5 | 6 | 2 | 4 | ||||||||||||||||||
| 3 | 6 | 4 | -2 | ||||||||||||||||||
| 1 | 7 | 6 | 1 | ||||||||||||||||||
| -1 | 6 | 7 | 1 | ||||||||||||||||||
| -3 | 4 | 6 | -2 | ||||||||||||||||||
| -5 | 2 | 6 | 4 | ||||||||||||||||||
| -7 | 1 | 4 | -3 | ||||||||||||||||||
| -9 | 2 | 2 | |||||||||||||||||||
| -11 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 71]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 71]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12],X[13, 7, 14, 6], X[9, 19, 10, 18], X[15, 20, 16, 1],X[19, 16, 20, 17], X[17, 11, 18, 10], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 71]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 9, -3, 4, -5, 3, -7, 8, -9, 6, -8, 7] |
In[5]:= | BR[Knot[10, 71]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, 2, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 71]][t] |
Out[6]= | -3 7 18 2 3 |
In[7]:= | Conway[Knot[10, 71]][z] |
Out[7]= | 2 4 6 1 + z + z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 71], Knot[11, NonAlternating, 156],
Knot[11, NonAlternating, 179]} |
In[9]:= | {KnotDet[Knot[10, 71]], KnotSignature[Knot[10, 71]]} |
Out[9]= | {77, 0} |
In[10]:= | J=Jones[Knot[10, 71]][q] |
Out[10]= | -5 3 6 10 12 2 3 4 5 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 71], Knot[10, 104]} |
In[12]:= | A2Invariant[Knot[10, 71]][q] |
Out[12]= | -16 -12 2 3 -6 -4 2 2 4 6 8 |
In[13]:= | Kauffman[Knot[10, 71]][a, z] |
Out[13]= | -4 3 2 4 z z z 3 5 2 |
In[14]:= | {Vassiliev[2][Knot[10, 71]], Vassiliev[3][Knot[10, 71]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 71]][q, t] |
Out[15]= | 7 1 2 1 4 2 6 4 |


