10 61: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_61}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=61|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-8,6,-7,5,-1,3,-2,4,-10,9,-5,7,-6,8,-4,10,-9/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 61]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 61]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11], |
|||
X[14, 7, 15, 8], X[16, 5, 17, 6], X[6, 15, 7, 16], X[4, 17, 5, 18], |
|||
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 61]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, |
|||
-4, 10, -9]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 61]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 1, -2, -3, 2, -3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 61]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 5 6 2 3 |
|||
7 - -- + -- - - - 6 t + 5 t - 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 61]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 4 z - 7 z - 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 61]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 61]], KnotSignature[Knot[10, 61]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 61]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 2 3 4 5 6 7 8 |
|||
3 + q - - - 4 q + 4 q - 5 q + 5 q - 4 q + 3 q - 2 q + q |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 61]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 61]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 2 4 6 8 14 24 |
|||
2 + q + q + -- - q - 3 q - 2 q + 2 q + q |
|||
2 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 61]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
-6 -4 5 6 z 8 z 2 z 2 z 2 z 6 z z |
|||
4 - a + a + -- - --- - --- - --- - 16 z + --- - ---- + ---- + -- - |
|||
2 5 3 a 10 8 6 4 |
|||
a a a a a a a |
|||
2 3 3 3 3 3 4 4 |
|||
24 z 2 z 6 z 17 z 26 z z 4 3 z 13 z |
|||
----- + ---- - ---- + ----- + ----- + -- + 17 z + ---- - ----- + |
|||
2 9 7 5 3 a 8 6 |
|||
a a a a a a a |
|||
4 4 5 5 5 5 6 6 |
|||
5 z 38 z 4 z 18 z 16 z 6 z 6 5 z 10 z |
|||
---- + ----- + ---- - ----- - ----- + ---- - 7 z + ---- - ----- - |
|||
4 2 7 5 3 a 6 4 |
|||
a a a a a a a |
|||
6 7 7 8 8 9 9 |
|||
22 z 5 z 5 z 8 3 z 4 z z z |
|||
----- + ---- - ---- + z + ---- + ---- + -- + -- |
|||
2 5 a 4 2 3 a |
|||
a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 61]], Vassiliev[3][Knot[10, 61]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -5}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 61]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 1 3 q 3 q 5 7 |
|||
3 q + 2 q + ----- + ---- + ---- + - + ---- + 3 q t + 2 q t + |
|||
5 4 3 2 t t |
|||
q t q t q t |
|||
7 2 9 2 9 3 11 3 11 4 13 4 13 5 |
|||
2 q t + 3 q t + 2 q t + 2 q t + q t + 2 q t + q t + |
|||
15 5 17 6 |
|||
q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:50, 27 August 2005
|
|
|
|
Visit 10 61's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 61's page at Knotilus! Visit 10 61's page at the original Knot Atlas! |
10_61 is also known as the pretzel knot P(4,3,3). |
Knot presentations
| Planar diagram presentation | X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X20,14,1,13 X12,20,13,19 |
| Gauss code | 1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, -4, 10, -9 |
| Dowker-Thistlethwaite code | 8 10 16 14 2 18 20 6 4 12 |
| Conway Notation | [4,3,3] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+5 t^2-6 t+7-6 t^{-1} +5 t^{-2} -2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-7 z^4-4 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
| Determinant and Signature | { 33, 4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-2 q^7+3 q^6-4 q^5+5 q^4-5 q^3+4 q^2-4 q+3- q^{-1} + q^{-2} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-2} -z^6 a^{-4} -5 z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +z^4-8 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +4 z^2-5 a^{-2} + a^{-4} + a^{-6} +4} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +3 z^8 a^{-4} +z^8-5 z^7 a^{-1} +5 z^7 a^{-5} -22 z^6 a^{-2} -10 z^6 a^{-4} +5 z^6 a^{-6} -7 z^6+6 z^5 a^{-1} -16 z^5 a^{-3} -18 z^5 a^{-5} +4 z^5 a^{-7} +38 z^4 a^{-2} +5 z^4 a^{-4} -13 z^4 a^{-6} +3 z^4 a^{-8} +17 z^4+z^3 a^{-1} +26 z^3 a^{-3} +17 z^3 a^{-5} -6 z^3 a^{-7} +2 z^3 a^{-9} -24 z^2 a^{-2} +z^2 a^{-4} +6 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -16 z^2-2 z a^{-1} -8 z a^{-3} -6 z a^{-5} +5 a^{-2} + a^{-4} - a^{-6} +4} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6+q^4+2 q^2+2- q^{-4} -3 q^{-6} -2 q^{-8} +2 q^{-14} + q^{-24} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+3 q^{22}-3 q^{20}+3 q^{18}-q^{16}+7 q^{12}-9 q^{10}+10 q^8-3 q^6+q^4+8 q^2-12+11 q^{-2} -2 q^{-4} +5 q^{-8} -9 q^{-10} +4 q^{-12} +5 q^{-14} -4 q^{-16} + q^{-18} -5 q^{-20} - q^{-22} +4 q^{-24} -8 q^{-26} +4 q^{-28} -9 q^{-30} +5 q^{-32} + q^{-34} -7 q^{-36} +6 q^{-38} -12 q^{-40} +8 q^{-42} -5 q^{-44} -3 q^{-46} +7 q^{-48} -9 q^{-50} +5 q^{-52} +3 q^{-54} -3 q^{-56} +4 q^{-58} - q^{-60} -4 q^{-62} +6 q^{-64} -3 q^{-66} +3 q^{-68} + q^{-70} -2 q^{-72} +6 q^{-74} -3 q^{-76} +3 q^{-78} - q^{-80} + q^{-82} - q^{-84} + q^{-86} + q^{-88} -2 q^{-90} +4 q^{-92} -3 q^{-94} +2 q^{-96} - q^{-98} - q^{-100} -3 q^{-104} +3 q^{-106} - q^{-108} + q^{-110} - q^{-114} +2 q^{-116} -2 q^{-118} +2 q^{-120} - q^{-122} - q^{-128} + q^{-130} - q^{-132} + q^{-134} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5+2 q- q^{-1} - q^{-5} + q^{-9} - q^{-11} + q^{-13} - q^{-15} + q^{-17} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{14}+2 q^{12}+2 q^{10}-3 q^8+2 q^4-3 q^2-2+2 q^{-2} - q^{-6} +3 q^{-8} +3 q^{-10} - q^{-12} - q^{-14} +2 q^{-16} - q^{-18} -3 q^{-20} +2 q^{-22} + q^{-24} - q^{-26} + q^{-30} - q^{-32} - q^{-34} + q^{-36} - q^{-38} + q^{-40} - q^{-44} + q^{-46} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{39}-q^{35}-q^{33}+2 q^{31}+3 q^{29}-5 q^{25}-2 q^{23}+4 q^{21}+5 q^{19}-3 q^{17}-7 q^{15}-3 q^{13}+5 q^{11}+5 q^9-2 q^7-5 q^5-q^3+7 q+6 q^{-1} - q^{-3} -5 q^{-5} + q^{-7} +5 q^{-9} +2 q^{-11} -6 q^{-13} -3 q^{-15} +3 q^{-17} +3 q^{-19} -4 q^{-21} -4 q^{-23} +5 q^{-25} +6 q^{-27} -5 q^{-29} -8 q^{-31} +3 q^{-33} +8 q^{-35} -8 q^{-39} -4 q^{-41} +3 q^{-43} +7 q^{-45} +3 q^{-47} -6 q^{-49} -6 q^{-51} +6 q^{-53} +9 q^{-55} -3 q^{-57} -8 q^{-59} +5 q^{-63} -3 q^{-67} + q^{-69} + q^{-71} -2 q^{-75} + q^{-79} - q^{-85} + q^{-87} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{64}-q^{62}-q^{60}+3 q^{58}+3 q^{56}+q^{54}-2 q^{52}-8 q^{50}-2 q^{48}+4 q^{46}+9 q^{44}+7 q^{42}-7 q^{40}-11 q^{38}-11 q^{36}+2 q^{34}+16 q^{32}+11 q^{30}+2 q^{28}-16 q^{26}-18 q^{24}-q^{22}+13 q^{20}+25 q^{18}+9 q^{16}-14 q^{14}-21 q^{12}-14 q^{10}+15 q^8+28 q^6+12 q^4-11 q^2-31-17 q^{-2} +13 q^{-4} +26 q^{-6} +17 q^{-8} -15 q^{-10} -29 q^{-12} -12 q^{-14} +14 q^{-16} +29 q^{-18} +12 q^{-20} -17 q^{-22} -22 q^{-24} -5 q^{-26} +21 q^{-28} +17 q^{-30} -7 q^{-32} -17 q^{-34} -9 q^{-36} +13 q^{-38} +13 q^{-40} -9 q^{-42} -16 q^{-44} -2 q^{-46} +22 q^{-48} +20 q^{-50} -14 q^{-52} -28 q^{-54} -12 q^{-56} +21 q^{-58} +34 q^{-60} +6 q^{-62} -25 q^{-64} -32 q^{-66} -10 q^{-68} +25 q^{-70} +33 q^{-72} +11 q^{-74} -21 q^{-76} -40 q^{-78} -12 q^{-80} +26 q^{-82} +37 q^{-84} +11 q^{-86} -33 q^{-88} -32 q^{-90} +2 q^{-92} +29 q^{-94} +22 q^{-96} -14 q^{-98} -21 q^{-100} -4 q^{-102} +12 q^{-104} +14 q^{-106} -4 q^{-108} -7 q^{-110} -3 q^{-112} +2 q^{-114} +4 q^{-116} -4 q^{-118} + q^{-120} + q^{-122} -3 q^{-128} +2 q^{-130} - q^{-138} + q^{-140} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-q^{101}-q^{99}-q^{97}+3 q^{93}+4 q^{91}+q^{89}-2 q^{87}-5 q^{85}-8 q^{83}-3 q^{81}+6 q^{79}+12 q^{77}+11 q^{75}+3 q^{73}-11 q^{71}-20 q^{69}-17 q^{67}-2 q^{65}+17 q^{63}+28 q^{61}+22 q^{59}+q^{57}-25 q^{55}-39 q^{53}-27 q^{51}+3 q^{49}+34 q^{47}+49 q^{45}+35 q^{43}-7 q^{41}-46 q^{39}-57 q^{37}-33 q^{35}+14 q^{33}+61 q^{31}+70 q^{29}+30 q^{27}-31 q^{25}-74 q^{23}-75 q^{21}-23 q^{19}+49 q^{17}+88 q^{15}+67 q^{13}+3 q^{11}-70 q^9-99 q^7-58 q^5+24 q^3+92 q+97 q^{-1} +35 q^{-3} -55 q^{-5} -106 q^{-7} -81 q^{-9} +5 q^{-11} +91 q^{-13} +114 q^{-15} +49 q^{-17} -51 q^{-19} -116 q^{-21} -91 q^{-23} +5 q^{-25} +99 q^{-27} +112 q^{-29} +38 q^{-31} -66 q^{-33} -116 q^{-35} -73 q^{-37} +30 q^{-39} +104 q^{-41} +88 q^{-43} +5 q^{-45} -78 q^{-47} -90 q^{-49} -24 q^{-51} +51 q^{-53} +71 q^{-55} +28 q^{-57} -33 q^{-59} -48 q^{-61} -16 q^{-63} +29 q^{-65} +31 q^{-67} -12 q^{-69} -45 q^{-71} -26 q^{-73} +29 q^{-75} +73 q^{-77} +49 q^{-79} -33 q^{-81} -99 q^{-83} -81 q^{-85} +9 q^{-87} +99 q^{-89} +117 q^{-91} +43 q^{-93} -66 q^{-95} -127 q^{-97} -94 q^{-99} +2 q^{-101} +96 q^{-103} +127 q^{-105} +74 q^{-107} -37 q^{-109} -129 q^{-111} -128 q^{-113} -35 q^{-115} +93 q^{-117} +155 q^{-119} +94 q^{-121} -42 q^{-123} -145 q^{-125} -124 q^{-127} -2 q^{-129} +110 q^{-131} +125 q^{-133} +32 q^{-135} -78 q^{-137} -108 q^{-139} -41 q^{-141} +51 q^{-143} +82 q^{-145} +38 q^{-147} -32 q^{-149} -61 q^{-151} -28 q^{-153} +24 q^{-155} +39 q^{-157} +16 q^{-159} -15 q^{-161} -25 q^{-163} -9 q^{-165} +12 q^{-167} +15 q^{-169} +3 q^{-171} -6 q^{-173} -5 q^{-175} - q^{-177} + q^{-179} +2 q^{-181} - q^{-185} + q^{-187} - q^{-191} - q^{-193} + q^{-195} - q^{-203} + q^{-205} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6+q^4+2 q^2+2- q^{-4} -3 q^{-6} -2 q^{-8} +2 q^{-14} + q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}+6 q^{16}-6 q^{14}+14 q^{12}-18 q^{10}+26 q^8-24 q^6+22 q^4-22 q^2+6-15 q^{-4} +16 q^{-6} -26 q^{-8} +34 q^{-10} -32 q^{-12} +34 q^{-14} -28 q^{-16} +28 q^{-18} -13 q^{-20} +12 q^{-22} +2 q^{-24} -4 q^{-26} +6 q^{-28} -8 q^{-30} -6 q^{-34} +3 q^{-36} -2 q^{-38} +4 q^{-40} -8 q^{-42} +7 q^{-44} -6 q^{-46} +6 q^{-48} -6 q^{-50} +5 q^{-52} -2 q^{-54} +4 q^{-56} -4 q^{-58} +3 q^{-60} -2 q^{-62} +2 q^{-64} -2 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}+q^{18}+q^{16}+q^{14}+3 q^{12}+3 q^{10}+2 q^8-q^6-q^4-3 q^2-5-7 q^{-2} -6 q^{-4} -2 q^{-6} +3 q^{-10} +7 q^{-12} +9 q^{-14} +6 q^{-16} +4 q^{-18} -2 q^{-22} -4 q^{-24} -3 q^{-26} -2 q^{-28} -2 q^{-30} +2 q^{-32} +4 q^{-34} + q^{-36} -2 q^{-38} - q^{-40} -2 q^{-42} -2 q^{-44} - q^{-46} + q^{-48} +2 q^{-50} + q^{-60} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}+3 q^8+2 q^6+2 q^4+3 q^2+1- q^{-2} -2 q^{-6} -4 q^{-8} -2 q^{-10} -4 q^{-12} -2 q^{-14} +2 q^{-20} +4 q^{-22} +3 q^{-24} + q^{-26} - q^{-32} -2 q^{-34} + q^{-36} + q^{-38} - q^{-40} + q^{-42} + q^{-44} -2 q^{-46} +2 q^{-50} - q^{-52} - q^{-54} + q^{-56} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7+q^5+3 q^3+2 q+3 q^{-1} - q^{-5} -4 q^{-7} -3 q^{-9} -3 q^{-11} - q^{-13} + q^{-15} + q^{-17} +2 q^{-19} + q^{-23} - q^{-25} + q^{-27} + q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+q^{12}+3 q^{10}+5 q^8+6 q^6+6 q^4+7 q^2+2- q^{-2} -5 q^{-4} -9 q^{-6} -12 q^{-8} -10 q^{-10} -6 q^{-12} -5 q^{-14} +6 q^{-18} +8 q^{-20} +2 q^{-22} +6 q^{-24} +6 q^{-26} + q^{-28} + q^{-30} +2 q^{-32} + q^{-34} -2 q^{-36} - q^{-38} -2 q^{-40} -3 q^{-42} -3 q^{-44} + q^{-46} + q^{-48} - q^{-50} +2 q^{-52} +2 q^{-54} - q^{-58} + q^{-62} - q^{-66} + q^{-70} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8+q^6+3 q^4+3 q^2+3+3 q^{-2} - q^{-6} -4 q^{-8} -4 q^{-10} -4 q^{-12} -3 q^{-14} - q^{-16} +2 q^{-20} + q^{-22} +2 q^{-24} + q^{-28} + q^{-34} + q^{-38} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}+3 q^8-2 q^6+4 q^4-3 q^2+5-3 q^{-2} +4 q^{-4} -2 q^{-6} -4 q^{-12} +4 q^{-14} -8 q^{-16} +6 q^{-18} -8 q^{-20} +6 q^{-22} -7 q^{-24} +5 q^{-26} -2 q^{-28} +2 q^{-30} + q^{-32} +3 q^{-36} -3 q^{-38} +3 q^{-40} -3 q^{-42} +3 q^{-44} -2 q^{-46} +2 q^{-48} -2 q^{-50} + q^{-52} - q^{-54} + q^{-56} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}+3 q^{14}+2 q^{12}-q^{10}-q^8+3 q^6+3 q^4-4- q^{-2} +2 q^{-4} +2 q^{-6} -3 q^{-8} -5 q^{-10} +3 q^{-14} + q^{-16} -4 q^{-18} -3 q^{-20} + q^{-22} +3 q^{-24} - q^{-26} -2 q^{-28} +3 q^{-32} - q^{-36} + q^{-38} +4 q^{-40} +2 q^{-42} -2 q^{-44} -2 q^{-46} + q^{-48} +3 q^{-50} - q^{-52} -3 q^{-54} -2 q^{-56} +2 q^{-58} +2 q^{-60} - q^{-62} -2 q^{-64} +2 q^{-68} +2 q^{-70} - q^{-72} -2 q^{-74} - q^{-76} + q^{-78} +2 q^{-80} - q^{-84} - q^{-86} + q^{-90} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}+3 q^{10}+6 q^6+6 q^2+6 q^{-2} -2 q^{-4} +2 q^{-6} -4 q^{-8} -2 q^{-10} -5 q^{-12} -7 q^{-14} -3 q^{-16} -7 q^{-18} + q^{-20} -7 q^{-22} +6 q^{-24} -3 q^{-26} +10 q^{-28} -2 q^{-30} +8 q^{-32} -2 q^{-34} +5 q^{-36} -2 q^{-38} + q^{-40} -2 q^{-42} - q^{-44} + q^{-46} - q^{-48} +2 q^{-50} -2 q^{-52} +3 q^{-54} -2 q^{-56} +2 q^{-58} -2 q^{-60} +2 q^{-62} -2 q^{-64} + q^{-66} - q^{-68} +2 q^{-70} - q^{-72} - q^{-76} + q^{-78} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}+3 q^{22}-3 q^{20}+3 q^{18}-q^{16}+7 q^{12}-9 q^{10}+10 q^8-3 q^6+q^4+8 q^2-12+11 q^{-2} -2 q^{-4} +5 q^{-8} -9 q^{-10} +4 q^{-12} +5 q^{-14} -4 q^{-16} + q^{-18} -5 q^{-20} - q^{-22} +4 q^{-24} -8 q^{-26} +4 q^{-28} -9 q^{-30} +5 q^{-32} + q^{-34} -7 q^{-36} +6 q^{-38} -12 q^{-40} +8 q^{-42} -5 q^{-44} -3 q^{-46} +7 q^{-48} -9 q^{-50} +5 q^{-52} +3 q^{-54} -3 q^{-56} +4 q^{-58} - q^{-60} -4 q^{-62} +6 q^{-64} -3 q^{-66} +3 q^{-68} + q^{-70} -2 q^{-72} +6 q^{-74} -3 q^{-76} +3 q^{-78} - q^{-80} + q^{-82} - q^{-84} + q^{-86} + q^{-88} -2 q^{-90} +4 q^{-92} -3 q^{-94} +2 q^{-96} - q^{-98} - q^{-100} -3 q^{-104} +3 q^{-106} - q^{-108} + q^{-110} - q^{-114} +2 q^{-116} -2 q^{-118} +2 q^{-120} - q^{-122} - q^{-128} + q^{-130} - q^{-132} + q^{-134} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 61"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+5 t^2-6 t+7-6 t^{-1} +5 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^6-7 z^4-4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-2 q^7+3 q^6-4 q^5+5 q^4-5 q^3+4 q^2-4 q+3- q^{-1} + q^{-2} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-2} -z^6 a^{-4} -5 z^4 a^{-2} -4 z^4 a^{-4} +z^4 a^{-6} +z^4-8 z^2 a^{-2} -3 z^2 a^{-4} +3 z^2 a^{-6} +4 z^2-5 a^{-2} + a^{-4} + a^{-6} +4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +3 z^8 a^{-4} +z^8-5 z^7 a^{-1} +5 z^7 a^{-5} -22 z^6 a^{-2} -10 z^6 a^{-4} +5 z^6 a^{-6} -7 z^6+6 z^5 a^{-1} -16 z^5 a^{-3} -18 z^5 a^{-5} +4 z^5 a^{-7} +38 z^4 a^{-2} +5 z^4 a^{-4} -13 z^4 a^{-6} +3 z^4 a^{-8} +17 z^4+z^3 a^{-1} +26 z^3 a^{-3} +17 z^3 a^{-5} -6 z^3 a^{-7} +2 z^3 a^{-9} -24 z^2 a^{-2} +z^2 a^{-4} +6 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -16 z^2-2 z a^{-1} -8 z a^{-3} -6 z a^{-5} +5 a^{-2} + a^{-4} - a^{-6} +4} |
Vassiliev invariants
| V2 and V3: | (-4, -5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 61. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | χ | |||||||||
| 17 | 1 | 1 | |||||||||||||||||||
| 15 | 1 | -1 | |||||||||||||||||||
| 13 | 2 | 1 | 1 | ||||||||||||||||||
| 11 | 2 | 1 | -1 | ||||||||||||||||||
| 9 | 3 | 2 | 1 | ||||||||||||||||||
| 7 | 2 | 2 | 0 | ||||||||||||||||||
| 5 | 2 | 3 | -1 | ||||||||||||||||||
| 3 | 3 | 3 | 0 | ||||||||||||||||||
| 1 | 1 | -1 | |||||||||||||||||||
| -1 | 1 | 3 | 2 | ||||||||||||||||||
| -3 | 0 | ||||||||||||||||||||
| -5 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 61]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 61]] |
Out[3]= | PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11],X[14, 7, 15, 8], X[16, 5, 17, 6], X[6, 15, 7, 16], X[4, 17, 5, 18],X[20, 14, 1, 13], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 61]] |
Out[4]= | GaussCode[1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, -4, 10, -9] |
In[5]:= | BR[Knot[10, 61]] |
Out[5]= | BR[4, {1, 1, 1, -2, 1, 1, 1, -2, -3, 2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 61]][t] |
Out[6]= | 2 5 6 2 3 |
In[7]:= | Conway[Knot[10, 61]][z] |
Out[7]= | 2 4 6 1 - 4 z - 7 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 61]} |
In[9]:= | {KnotDet[Knot[10, 61]], KnotSignature[Knot[10, 61]]} |
Out[9]= | {33, 4} |
In[10]:= | J=Jones[Knot[10, 61]][q] |
Out[10]= | -2 1 2 3 4 5 6 7 8 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 61]} |
In[12]:= | A2Invariant[Knot[10, 61]][q] |
Out[12]= | -6 -4 2 4 6 8 14 24 |
In[13]:= | Kauffman[Knot[10, 61]][a, z] |
Out[13]= | 2 2 2 2-6 -4 5 6 z 8 z 2 z 2 z 2 z 6 z z |
In[14]:= | {Vassiliev[2][Knot[10, 61]], Vassiliev[3][Knot[10, 61]]} |
Out[14]= | {0, -5} |
In[15]:= | Kh[Knot[10, 61]][q, t] |
Out[15]= | 33 5 1 1 3 q 3 q 5 7 |


