T(5,3): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 38: Line 38:
|}
|}


{{Polynomial Invariants|name=T(5,3)}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}


===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===

Revision as of 16:39, 27 August 2005


T(9,2).jpg

T(9,2)

T(11,2).jpg

T(11,2)

T(5,3)

T(5,3).jpg Visit T(5,3)'s page at Knotilus!

Visit T(5,3)'s page at the original Knot Atlas!

T(5,3) Quick Notes


T(5,3) Further Notes and Views

Knot presentations

Planar diagram presentation X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13
Gauss code 2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1
Dowker-Thistlethwaite code 14 -16 18 -20 2 -4 6 -8 10 -12
Conway Notation Data:T(5,3)/Conway Notation

Knot presentations

Planar diagram presentation X7,1,8,20 X14,2,15,1 X15,9,16,8 X2,10,3,9 X3,17,4,16 X10,18,11,17 X11,5,12,4 X18,6,19,5 X19,13,20,12 X6,14,7,13
Gauss code {2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, -8, -9, 1}
Dowker-Thistlethwaite code 14 -16 18 -20 2 -4 6 -8 10 -12

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (8, 20)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,3)/V 2,1 Data:T(5,3)/V 3,1 Data:T(5,3)/V 4,1 Data:T(5,3)/V 4,2 Data:T(5,3)/V 4,3 Data:T(5,3)/V 5,1 Data:T(5,3)/V 5,2 Data:T(5,3)/V 5,3 Data:T(5,3)/V 5,4 Data:T(5,3)/V 6,1 Data:T(5,3)/V 6,2 Data:T(5,3)/V 6,3 Data:T(5,3)/V 6,4 Data:T(5,3)/V 6,5 Data:T(5,3)/V 6,6 Data:T(5,3)/V 6,7 Data:T(5,3)/V 6,8 Data:T(5,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Vassiliev invariants

V2 and V3 {0, 20}

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567χ
21       1-1
19     1  -1
17     11 0
15   11   0
13    1   1
11  1     1
91       1
71       1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[5, 3]]
Out[2]=  
10
In[3]:=
PD[TorusKnot[5, 3]]
Out[3]=  
PD[X[7, 1, 8, 20], X[14, 2, 15, 1], X[15, 9, 16, 8], X[2, 10, 3, 9], 
 X[3, 17, 4, 16], X[10, 18, 11, 17], X[11, 5, 12, 4], X[18, 6, 19, 5], 

X[19, 13, 20, 12], X[6, 14, 7, 13]]
In[4]:=
GaussCode[TorusKnot[5, 3]]
Out[4]=  
GaussCode[2, -4, -5, 7, 8, -10, -1, 3, 4, -6, -7, 9, 10, -2, -3, 5, 6, 
  -8, -9, 1]
In[5]:=
BR[TorusKnot[5, 3]]
Out[5]=  
BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[5, 3]][t]
Out[6]=  
      -4    -3   1        3    4

-1 + t - t + - + t - t + t

t
In[7]:=
Conway[TorusKnot[5, 3]][z]
Out[7]=  
       2       4      6    8
1 + 8 z  + 14 z  + 7 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[10, 124]}
In[9]:=
{KnotDet[TorusKnot[5, 3]], KnotSignature[TorusKnot[5, 3]]}
Out[9]=  
{1, 8}
In[10]:=
J=Jones[TorusKnot[5, 3]][q]
Out[10]=  
 4    6    10
q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 124]}
In[12]:=
A2Invariant[TorusKnot[5, 3]][q]
Out[12]=  
 14    16      18      20      22    24      28      30      32    34

q + q + 2 q + 2 q + 2 q + q - 2 q - 2 q - 2 q - q +

  40
q
In[13]:=
Kauffman[TorusKnot[5, 3]][a, z]
Out[13]=  
                              2        2       2       3       3
2     8    7    8 z   8 z   z     22 z    21 z    14 z    14 z

--- + --- + -- - --- - --- - --- - ----- - ----- + ----- + ----- +

12    10    8    11    9     12     10      8       11      9

a a a a a a a a a a

     4       4      5      5      6      6    7     7    8     8
 21 z    21 z    7 z    7 z    8 z    8 z    z     z    z     z
 ----- + ----- - ---- - ---- - ---- - ---- + --- + -- + --- + --
   10      8      11      9     10      8     11    9    10    8
a a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[5, 3]], Vassiliev[3][TorusKnot[5, 3]]}
Out[14]=  
{0, 20}
In[15]:=
Kh[TorusKnot[5, 3]][q, t]
Out[15]=  
 7    9    11  2    15  3    13  4    15  4    17  5    19  5

q + q + q t + q t + q t + q t + q t + q t +

  17  6    21  7
q t + q t