Link Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- <* (* -->{{Splice Template Notice}}<!-- *) *> --> |
<!-- <* (* -->{{Splice Template Notice}}<!-- *) *> --> |
||
<!-- This knot page was produced from [[ |
<!-- This knot page was produced from [[Link Splice Template]] --> |
||
<!-- <*K=Knot[ThisKnot];{n,k}=List@@K;*> --> |
<!-- <*K=Knot[ThisKnot];{n,k}=List@@K;*> --> |
||
<!-- --> |
<!-- --> |
||
Line 48: | Line 48: | ||
</table> |
</table> |
||
<* (* <!-- *) *> |
<* (* <!-- *) *> [[Category:Knot Page]] <* (* --> *) *> |
Revision as of 19:20, 28 August 2005
- REDIRECT Template:Splice Base Notice
[[Image:Data:Link Splice Base/Previous Knot.gif|80px|link=Data:Link Splice Base/Previous Knot]] |
[[Image:Data:Link Splice Base/Next Knot.gif|80px|link=Data:Link Splice Base/Next Knot]] |
File:Link Splice Base.gif | Visit [<*KnotilusURL[K]*> Link Splice Base's page] at Knotilus!
Visit <*n*><*If [AlternatingQ[K,"a","n"]*><*k*>.html Link Splice Base's page] at the original Knot Atlas! |
Link Splice Base Quick Notes |
Link Splice Base Further Notes and Views
Knot presentations
Planar diagram presentation | Data:Link Splice Base/PD Presentation |
Gauss code | Data:Link Splice Base/Gauss Code |
Polynomial invariants
Vassiliev invariants
V2 and V3: | (Data:Link Splice Base/V 2, Data:Link Splice Base/V 3) |
V2,1 through V6,9: |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Link Splice Base/Signature is the signature of Link Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Link Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Link Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |
<* (* *) *>