Rolfsen Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 74: | Line 74: | ||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr> |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr> |
||
⚫ | |||
<*InOut["PD[``]", K]*> |
<*InOut["PD[``]", K]*> |
||
Line 81: | Line 79: | ||
<*InOut["GaussCode[``]", K]*> |
<*InOut["GaussCode[``]", K]*> |
||
<*InOut[" |
<*InOut["DTCode[``]", K]*> |
||
⚫ | |||
<*InOut["{First[br], Crossings[br]}"]*> |
|||
<*InOut["BraidIndex[``]", K]*> |
|||
<*GraphicsBox["`1`_`2`_ML.gif", "Show[DrawMorseLink[Knot[`1`, `2`]]]", n, k]*> |
|||
<*InOut[ |
|||
"(#[``]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}", K |
|||
]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
<*InOut["alex = Alexander[``][t]", K]*> |
||
Line 89: | Line 99: | ||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
||
<*InOut["{KnotDet[` |
<*InOut["{KnotDet[``], KnotSignature[``]}", K]*> |
||
<*InOut[" |
<*InOut["Jones[``][q]", K]*> |
||
<*InOut[ |
<*InOut[ |
||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
||
]*> |
]*> |
||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
<*InOut["A2Invariant[``][q]", K]*> |
||
<*InOut["HOMFLYPT[``][a, z]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
<*InOut["Kauffman[``][a, z]", K]*> |
||
<*InOut["{Vassiliev[2][` |
<*InOut["{Vassiliev[2][``], Vassiliev[3][``]}", K]*> |
||
<*InOut["Kh[``][q, t]", K]*> |
<*InOut["Kh[``][q, t]", K]*> |
||
<* If[ColouredJones[K, 2] === NotAvailable, "", |
|||
InOut["ColouredJones[``, 2][q]", K] |
|||
] *> |
|||
</table> |
</table> |
Revision as of 16:38, 29 August 2005
- REDIRECT Template:Splice Base Notice
[[Image:Data:Rolfsen Splice Base/Previous Knot.gif|80px|link=Data:Rolfsen Splice Base/Previous Knot]] |
[[Image:Data:Rolfsen Splice Base/Next Knot.gif|80px|link=Data:Rolfsen Splice Base/Next Knot]] |
File:Rolfsen Splice Base.gif | Visit <*n*>&id=<*k*> Rolfsen Splice Base's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [<*KnotilusURL[K]*> Rolfsen Splice Base's page] at Knotilus! Visit <*n*>.<*k*>.html Rolfsen Splice Base's page at the original Knot Atlas! |
Rolfsen Splice Base Further Notes and Views
Knot presentations
Minimum Braid Representative: <* BraidPlot[CollapseBraid[br=BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> Length is <*Crossings[br]*>, width is <*First[br]*>. Braid index is <*BraidIndex[K]*>. |
Three dimensional invariants
|
[edit Notes for Rolfsen Splice Base's three dimensional invariants] |
Four dimensional invariants
|
[edit Notes for Rolfsen Splice Base's four dimensional invariants] |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Rolfsen Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Rolfsen Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Rolfsen Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Rolfsen Splice Base/Determinant, Data:Rolfsen Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Rolfsen Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Rolfsen Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Rolfsen Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<*
alex = Alexander[K][t]; others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others] ]
- >...}
Same Jones Polynomial (up to mirroring, ): {<*
J = Jones[Knot[n,k]][q]; others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])& ], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others] ]
- >...}
Vassiliev invariants
V2 and V3: | (Data:Rolfsen Splice Base/V 2, Data:Rolfsen Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Rolfsen Splice Base/Signature is the signature of Rolfsen Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Rolfsen Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Rolfsen Splice Base/Integral Khovanov Homology |
The Coloured Jones Polynomials
2 | <*ColouredJones[K, 2][q]*> |
3 | <*ColouredJones[K, 3][q]*> |
4 | <*ColouredJones[K, 4][q]*> |
5 | <*ColouredJones[K, 5][q]*> |
6 | <*ColouredJones[K, 6][q]*> |
7 | <*ColouredJones[K, 7][q]*> |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["PD[``]", K]*>
<*InOut["GaussCode[``]", K]*>
<*InOut["DTCode[``]", K]*>
<*InOut["br = BR[``]", K]*>
<*InOut["{First[br], Crossings[br]}"]*>
<*InOut["BraidIndex[``]", K]*>
<*GraphicsBox["`1`_`2`_ML.gif", "Show[DrawMorseLink[Knot[`1`, `2`]]]", n, k]*>
<*InOut[
"(#[``]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}", K
]*>
<*InOut["alex = Alexander[``][t]", K]*>
<*InOut["Conway[``][z]", K]*>
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*>
<*InOut["{KnotDet[``], KnotSignature[``]}", K]*>
<*InOut["Jones[``][q]", K]*>
<*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*>
<*InOut["A2Invariant[``][q]", K]*>
<*InOut["HOMFLYPT[``][a, z]", K]*>
<*InOut["Kauffman[``][a, z]", K]*>
<*InOut["{Vassiliev[2][``], Vassiliev[3][``]}", K]*>
<*InOut["Kh[``][q, t]", K]*>
<* If[ColouredJones[K, 2] === NotAvailable, "",
InOut["ColouredJones[``, 2][q]", K]
] *>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |
See/edit the Rolfsen_Splice_Template.
<* (* *) *>