10 47: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
| Line 48: | Line 41: | ||
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 139: | Line 131: | ||
q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 20:06, 28 August 2005
|
|
|
|
Visit 10 47's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 47's page at Knotilus! Visit 10 47's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X3849 X9,17,10,16 X5,15,6,14 X15,7,16,6 X11,19,12,18 X13,1,14,20 X17,11,18,10 X19,13,20,12 X7283 |
| Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7 |
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 10 12 |
| Conway Notation | [5,21,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-3 t^3+6 t^2-7 t+7-7 t^{-1} +6 t^{-2} -3 t^{-3} + t^{-4} } |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 41, 4 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q-2 q^{-3} -2 q^{-7} +2 q^{-9} + q^{-11} +4 q^{-13} +4 q^{-15} +4 q^{-17} +3 q^{-19} -4 q^{-25} - q^{-27} -3 q^{-29} - q^{-33} } |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{10}+5 q^8-5 q^6+4 q^4+2 q^2-10+20 q^{-2} -22 q^{-4} +18 q^{-6} -12 q^{-8} -11 q^{-10} +7 q^{-12} -35 q^{-14} +17 q^{-16} -39 q^{-18} +23 q^{-20} -18 q^{-22} +31 q^{-24} +22 q^{-26} +22 q^{-28} +61 q^{-30} -9 q^{-32} +66 q^{-34} -34 q^{-36} +24 q^{-38} -38 q^{-40} -20 q^{-42} -19 q^{-44} -44 q^{-46} +18 q^{-48} -51 q^{-50} +34 q^{-52} -20 q^{-54} +7 q^{-56} +14 q^{-58} -6 q^{-60} +14 q^{-62} -5 q^{-64} +8 q^{-66} -6 q^{-68} +10 q^{-70} -12 q^{-72} +8 q^{-74} -3 q^{-76} -10 q^{-78} +17 q^{-80} -15 q^{-82} +5 q^{-84} +5 q^{-86} -9 q^{-88} +9 q^{-90} -3 q^{-92} - q^{-94} +3 q^{-96} -2 q^{-98} + q^{-100} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4+1+2 q^{-2} + q^{-4} - q^{-6} - q^{-8} -5 q^{-10} -8 q^{-12} -10 q^{-14} -11 q^{-16} -7 q^{-18} - q^{-20} +6 q^{-22} +11 q^{-24} +21 q^{-26} +24 q^{-28} +22 q^{-30} +13 q^{-32} +14 q^{-34} +4 q^{-36} -8 q^{-38} -10 q^{-40} -10 q^{-42} -16 q^{-44} -14 q^{-46} -6 q^{-48} -8 q^{-50} -6 q^{-52} +3 q^{-56} -2 q^{-58} +5 q^{-62} +2 q^{-64} -2 q^{-66} +2 q^{-68} +3 q^{-70} + q^{-76} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1-2 q^{-4} - q^{-6} -2 q^{-8} - q^{-10} + q^{-12} + q^{-14} +5 q^{-16} +4 q^{-18} +7 q^{-20} +4 q^{-22} +4 q^{-24} - q^{-28} -3 q^{-30} -4 q^{-32} -2 q^{-34} -3 q^{-36} - q^{-40} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4-3 q^2+3-5 q^{-2} +6 q^{-4} -7 q^{-6} +6 q^{-8} -5 q^{-10} +5 q^{-12} + q^{-16} +6 q^{-18} -5 q^{-20} +11 q^{-22} -10 q^{-24} +12 q^{-26} -11 q^{-28} +10 q^{-30} -9 q^{-32} +5 q^{-34} -4 q^{-36} + q^{-40} -4 q^{-42} +5 q^{-44} -5 q^{-46} +5 q^{-48} -5 q^{-50} +4 q^{-52} -4 q^{-54} +3 q^{-56} -2 q^{-58} + q^{-60} - q^{-62} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-q^8-q^6+2 q^4+2 q^2-2-4 q^{-2} +4 q^{-6} -7 q^{-10} -5 q^{-12} +3 q^{-14} +5 q^{-16} - q^{-18} -7 q^{-20} +7 q^{-24} +8 q^{-26} - q^{-30} +3 q^{-32} +8 q^{-34} +4 q^{-36} +4 q^{-42} + q^{-44} -4 q^{-46} -4 q^{-48} + q^{-50} +2 q^{-52} -4 q^{-54} -7 q^{-56} -2 q^{-58} +4 q^{-60} -5 q^{-64} -4 q^{-66} +2 q^{-68} +4 q^{-70} -4 q^{-74} -3 q^{-76} +2 q^{-78} +5 q^{-80} + q^{-82} -3 q^{-84} -3 q^{-86} + q^{-88} +3 q^{-90} + q^{-92} - q^{-94} - q^{-96} + q^{-100} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-q^4+2 q^2-2+4 q^{-2} -5 q^{-4} +3 q^{-6} -8 q^{-8} +2 q^{-10} -10 q^{-12} - q^{-14} -7 q^{-16} +2 q^{-18} + q^{-20} +4 q^{-22} +11 q^{-24} +8 q^{-26} +18 q^{-28} +4 q^{-30} +16 q^{-32} -4 q^{-34} +10 q^{-36} -12 q^{-38} +3 q^{-40} -14 q^{-42} -11 q^{-46} -5 q^{-50} - q^{-52} -3 q^{-56} +2 q^{-58} -3 q^{-60} +4 q^{-62} -4 q^{-64} +3 q^{-66} -3 q^{-68} +5 q^{-70} -3 q^{-72} +2 q^{-74} -3 q^{-76} +3 q^{-78} - q^{-80} + q^{-82} - q^{-84} + q^{-86} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 47"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-3 t^3+6 t^2-7 t+7-7 t^{-1} +6 t^{-2} -3 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (6, 11) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 4 is the signature of 10 47. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 47]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 47]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 17, 10, 16], X[5, 15, 6, 14],X[15, 7, 16, 6], X[11, 19, 12, 18], X[13, 1, 14, 20],X[17, 11, 18, 10], X[19, 13, 20, 12], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 47]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -3, 8, -6, 9, -7, 4, -5, 3, -8, 6, -9, 7] |
In[5]:= | BR[Knot[10, 47]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, -2, 1, 1, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 47]][t] |
Out[6]= | -4 3 6 7 2 3 4 |
In[7]:= | Conway[Knot[10, 47]][z] |
Out[7]= | 2 4 6 8 1 + 6 z + 8 z + 5 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 47]} |
In[9]:= | {KnotDet[Knot[10, 47]], KnotSignature[Knot[10, 47]]} |
Out[9]= | {41, 4} |
In[10]:= | J=Jones[Knot[10, 47]][q] |
Out[10]= | 1 2 3 4 5 6 7 8 9 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 47]} |
In[12]:= | A2Invariant[Knot[10, 47]][q] |
Out[12]= | -2 2 6 8 10 12 14 18 20 22 26 -q - q + q + q + 4 q + q + 3 q - q - q - 2 q - q |
In[13]:= | Kauffman[Knot[10, 47]][a, z] |
Out[13]= | 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 47]], Vassiliev[3][Knot[10, 47]]} |
Out[14]= | {0, 11} |
In[15]:= | Kh[Knot[10, 47]][q, t] |
Out[15]= | 33 5 1 1 q 2 q q 5 7 |


