4 1: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 16: | Line 16: | ||
| {{Knot Presentations}} | {{Knot Presentations}} | ||
| <center><table border=1 cellpadding=10><tr align=center valign=top> | |||
| <td> | |||
| [[Braid Representatives|Minimum Braid Representative]]: | |||
| <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> | |||
| </table> | |||
| [[Invariants from Braid Theory|Length]] is 4, width is 3. | |||
| [[Invariants from Braid Theory|Braid index]] is 3. | |||
| </td> | |||
| <td> | |||
| [[Lightly Documented Features|A Morse Link Presentation]]: | |||
| [[Image:{{PAGENAME}}_ML.gif]] | |||
| </td> | |||
| </tr></table></center> | |||
| {{3D Invariants}} | {{3D Invariants}} | ||
| {{4D Invariants}} | {{4D Invariants}} | ||
| {{Polynomial Invariants}} | {{Polynomial Invariants}} | ||
| === "Similar" Knots (within the Atlas) === | |||
| Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: | |||
| {...} | |||
| Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):  | |||
| {[[K11n19]], ...} | |||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| Line 36: | Line 66: | ||
| <tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table>}} | </table>}} | ||
| {{Display Coloured Jones|J2=<math>q^6-q^5-q^4+2 q^3-q^2-q+3- q^{-1} - q^{-2} +2 q^{-3} - q^{-4} - q^{-5} + q^{-6} </math>|J3=<math>q^{12}-q^{11}-q^{10}+2 q^8-2 q^6+3 q^4-3 q^2+3-3 q^{-2} +3 q^{-4} -2 q^{-6} +2 q^{-8} - q^{-10} - q^{-11} + q^{-12} </math>|J4=<math>q^{20}-q^{19}-q^{18}+3 q^{15}-q^{14}-q^{13}-q^{12}-q^{11}+5 q^{10}-q^9-2 q^8-2 q^7-q^6+6 q^5-q^4-2 q^3-2 q^2-q+7- q^{-1} -2 q^{-2} -2 q^{-3} - q^{-4} +6 q^{-5} - q^{-6} -2 q^{-7} -2 q^{-8} - q^{-9} +5 q^{-10} - q^{-11} - q^{-12} - q^{-13} - q^{-14} +3 q^{-15} - q^{-18} - q^{-19} + q^{-20} </math>|J5=<math>q^{30}-q^{29}-q^{28}+q^{25}+2 q^{24}-2 q^{22}-q^{21}-q^{20}+q^{19}+3 q^{18}+q^{17}-2 q^{16}-3 q^{15}-2 q^{14}+2 q^{13}+4 q^{12}+2 q^{11}-2 q^{10}-4 q^9-2 q^8+2 q^7+5 q^6+2 q^5-2 q^4-5 q^3-2 q^2+2 q+5+2 q^{-1} -2 q^{-2} -5 q^{-3} -2 q^{-4} +2 q^{-5} +5 q^{-6} +2 q^{-7} -2 q^{-8} -4 q^{-9} -2 q^{-10} +2 q^{-11} +4 q^{-12} +2 q^{-13} -2 q^{-14} -3 q^{-15} -2 q^{-16} + q^{-17} +3 q^{-18} + q^{-19} - q^{-20} - q^{-21} -2 q^{-22} +2 q^{-24} + q^{-25} - q^{-28} - q^{-29} + q^{-30} </math>|J6=<math>q^{42}-q^{41}-q^{40}+q^{37}+3 q^{35}-q^{34}-2 q^{33}-q^{32}-q^{31}+6 q^{28}-q^{27}-2 q^{26}-2 q^{25}-2 q^{24}-q^{23}+9 q^{21}-2 q^{19}-3 q^{18}-3 q^{17}-2 q^{16}+11 q^{14}-2 q^{12}-4 q^{11}-4 q^{10}-2 q^9+12 q^7-2 q^5-4 q^4-4 q^3-2 q^2+13-2 q^{-2} -4 q^{-3} -4 q^{-4} -2 q^{-5} +12 q^{-7} -2 q^{-9} -4 q^{-10} -4 q^{-11} -2 q^{-12} +11 q^{-14} -2 q^{-16} -3 q^{-17} -3 q^{-18} -2 q^{-19} +9 q^{-21} - q^{-23} -2 q^{-24} -2 q^{-25} -2 q^{-26} - q^{-27} +6 q^{-28} - q^{-31} - q^{-32} -2 q^{-33} - q^{-34} +3 q^{-35} + q^{-37} - q^{-40} - q^{-41} + q^{-42} </math>|J7=<math>q^{56}-q^{55}-q^{54}+q^{51}+q^{49}+2 q^{48}-q^{47}-2 q^{46}-q^{45}-2 q^{44}+q^{43}+q^{41}+5 q^{40}-2 q^{38}-2 q^{37}-4 q^{36}+2 q^{33}+7 q^{32}+q^{31}-q^{30}-2 q^{29}-7 q^{28}-2 q^{27}+2 q^{25}+9 q^{24}+2 q^{23}-3 q^{21}-9 q^{20}-3 q^{19}+3 q^{17}+10 q^{16}+3 q^{15}-3 q^{13}-10 q^{12}-3 q^{11}+3 q^9+11 q^8+3 q^7-3 q^5-11 q^4-3 q^3+3 q+11+3 q^{-1} -3 q^{-3} -11 q^{-4} -3 q^{-5} +3 q^{-7} +11 q^{-8} +3 q^{-9} -3 q^{-11} -10 q^{-12} -3 q^{-13} +3 q^{-15} +10 q^{-16} +3 q^{-17} -3 q^{-19} -9 q^{-20} -3 q^{-21} +2 q^{-23} +9 q^{-24} +2 q^{-25} -2 q^{-27} -7 q^{-28} -2 q^{-29} - q^{-30} + q^{-31} +7 q^{-32} +2 q^{-33} -4 q^{-36} -2 q^{-37} -2 q^{-38} +5 q^{-40} + q^{-41} + q^{-43} -2 q^{-44} - q^{-45} -2 q^{-46} - q^{-47} +2 q^{-48} + q^{-49} + q^{-51} - q^{-54} - q^{-55} + q^{-56} </math>}} | |||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 43: | Line 76: | ||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
| </tr> | </tr> | ||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August  | <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[4, 1]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 6, 1, 5], X[6, 3, 7, 4], X[2, 7, 3, 8]]</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[4, 1]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -3, 4, -2]</nowiki></pre></td></tr> | ||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, 2}]</nowiki></pre></td></tr> | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, 2}]</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | ||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[4, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:4_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> | |||
| ⚫ | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[4, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | ||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| 3 - - - t | 3 - - - t | ||
|     t</nowiki></pre></td></tr> |     t</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[4, 1]][z]</nowiki></pre></td></tr> | ||
| ⚫ | |||
| 1 - z</nowiki></pre></td></tr> | 1 - z</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[4, 1]}</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[4, 1]], KnotSignature[Knot[4, 1]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 0}</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -2   1        2 | |||
| 1 + q   - - - q + q | 1 + q   - - - q + q | ||
|           q</nowiki></pre></td></tr> |           q</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[4, 1], Knot[11, NonAlternating, 19]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[4, 1]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -8    -6    6    8 | |||
| -1 + q   + q   + q  + q</nowiki></pre></td></tr> | -1 + q   + q   + q  + q</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[4, 1]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2    2    2 | |||
| -1 + a   + a  - z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[4, 1]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                  2            3 | |||
|       -2    2   z            2   z     2  2   z       3 |       -2    2   z            2   z     2  2   z       3 | ||
| -1 - a   - a  - - - a z + 2 z  + -- + a  z  + -- + a z | -1 - a   - a  - - - a z + 2 z  + -- + a  z  + -- + a z | ||
|                 a                 2           a |                 a                 2           a | ||
|                                  a</nowiki></pre></td></tr> |                                  a</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[4, 1]], Vassiliev[3][Knot[4, 1]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr> | ||
| ⚫ | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[4, 1]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1         1      1           5  2 | |||
| - + q + ----- + --- + q t + q  t | - + q + ----- + --- + q t + q  t | ||
| q        5  2   q t | q        5  2   q t | ||
|         q  t</nowiki></pre></td></tr> |         q  t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 2][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -6    -5    -4   2     -2   1        2      3    4    5    6 | |||
| 3 + q   - q   - q   + -- - q   - - - q - q  + 2 q  - q  - q  + q | |||
|                        3         q | |||
|                       q</nowiki></pre></td></tr> | |||
| </table> | </table> | ||
| See/edit the [[Rolfsen_Splice_Template]]. | |||
|  [[Category:Knot Page]] |  [[Category:Knot Page]] | ||
Revision as of 17:58, 29 August 2005
|  |  | 
|   | Visit 4 1's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 4 1's page at Knotilus! Visit 4 1's page at the original Knot Atlas! 4_1 is also known as "the Figure Eight knot", as some people think it looks like a figure `8' in one of its common projections. See e.g. [1] . For two 4_1 knots along a closed loop, see 10_59, 10_60, K12a975, and K12a991. | 
|   A Neli-Kolam with 3x2 dot array[1] | |||
|   Thurston's Trick [2] | 
Non-prime (compound) versions
Knot presentations
| Planar diagram presentation | X4251 X8615 X6374 X2738 | 
| Gauss code | 1, -4, 3, -1, 2, -3, 4, -2 | 
| Dowker-Thistlethwaite code | 4 6 8 2 | 
| Conway Notation | [22] | 
| 
 Length is 4, width is 3. Braid index is 3. | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
B3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
B4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
C3 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0 | 
C4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["4 1"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 5, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {K11n19, ...}
Vassiliev invariants
| V2 and V3: | (-1, 0) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 4 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.



















