10 93: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 73: | ||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{13}-3 q^{12}-q^{11}+11 q^{10}-9 q^9-14 q^8+31 q^7-6 q^6-42 q^5+48 q^4+11 q^3-71 q^2+52 q+35-88 q^{-1} +41 q^{-2} +54 q^{-3} -85 q^{-4} +21 q^{-5} +57 q^{-6} -63 q^{-7} +7 q^{-8} +39 q^{-9} -35 q^{-10} +4 q^{-11} +16 q^{-12} -14 q^{-13} +3 q^{-14} +3 q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>-q^{27}+3 q^{26}+q^{25}-5 q^{24}-9 q^{23}+9 q^{22}+23 q^{21}-6 q^{20}-43 q^{19}-11 q^{18}+64 q^{17}+44 q^{16}-74 q^{15}-91 q^{14}+66 q^{13}+138 q^{12}-31 q^{11}-183 q^{10}-15 q^9+202 q^8+80 q^7-209 q^6-137 q^5+190 q^4+196 q^3-162 q^2-240 q+117+282 q^{-1} -72 q^{-2} -304 q^{-3} +9 q^{-4} +326 q^{-5} +44 q^{-6} -318 q^{-7} -106 q^{-8} +303 q^{-9} +142 q^{-10} -253 q^{-11} -172 q^{-12} +205 q^{-13} +161 q^{-14} -140 q^{-15} -139 q^{-16} +93 q^{-17} +97 q^{-18} -55 q^{-19} -58 q^{-20} +32 q^{-21} +29 q^{-22} -21 q^{-23} -10 q^{-24} +13 q^{-25} + q^{-26} -7 q^{-27} +2 q^{-28} +2 q^{-29} -3 q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{46}-3 q^{45}-q^{44}+5 q^{43}+3 q^{42}+9 q^{41}-19 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+74 q^{36}-15 q^{35}-77 q^{34}-75 q^{33}-40 q^{32}+200 q^{31}+121 q^{30}-20 q^{29}-199 q^{28}-323 q^{27}+164 q^{26}+297 q^{25}+316 q^{24}-59 q^{23}-655 q^{22}-203 q^{21}+124 q^{20}+681 q^{19}+489 q^{18}-593 q^{17}-576 q^{16}-505 q^{15}+601 q^{14}+1055 q^{13}-49 q^{12}-489 q^{11}-1177 q^{10}+26 q^9+1191 q^8+584 q^7+70 q^6-1488 q^5-682 q^4+889 q^3+990 q^2+776 q-1447-1264 q^{-1} +403 q^{-2} +1197 q^{-3} +1432 q^{-4} -1241 q^{-5} -1742 q^{-6} -149 q^{-7} +1310 q^{-8} +2042 q^{-9} -885 q^{-10} -2102 q^{-11} -796 q^{-12} +1195 q^{-13} +2511 q^{-14} -277 q^{-15} -2092 q^{-16} -1383 q^{-17} +688 q^{-18} +2489 q^{-19} +389 q^{-20} -1515 q^{-21} -1501 q^{-22} +10 q^{-23} +1824 q^{-24} +673 q^{-25} -697 q^{-26} -1042 q^{-27} -348 q^{-28} +940 q^{-29} +469 q^{-30} -164 q^{-31} -439 q^{-32} -293 q^{-33} +353 q^{-34} +156 q^{-35} -10 q^{-36} -95 q^{-37} -127 q^{-38} +115 q^{-39} +8 q^{-40} - q^{-41} + q^{-42} -40 q^{-43} +39 q^{-44} -12 q^{-45} -3 q^{-46} +8 q^{-47} -11 q^{-48} +10 q^{-49} -5 q^{-50} +3 q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>-q^{70}+3 q^{69}+q^{68}-5 q^{67}-3 q^{66}-3 q^{65}+q^{64}+17 q^{63}+24 q^{62}-6 q^{61}-31 q^{60}-48 q^{59}-41 q^{58}+27 q^{57}+115 q^{56}+123 q^{55}+22 q^{54}-129 q^{53}-253 q^{52}-207 q^{51}+62 q^{50}+371 q^{49}+463 q^{48}+202 q^{47}-307 q^{46}-740 q^{45}-677 q^{44}-23 q^{43}+812 q^{42}+1197 q^{41}+708 q^{40}-465 q^{39}-1538 q^{38}-1586 q^{37}-376 q^{36}+1365 q^{35}+2340 q^{34}+1614 q^{33}-514 q^{32}-2568 q^{31}-2908 q^{30}-978 q^{29}+2015 q^{28}+3782 q^{27}+2756 q^{26}-556 q^{25}-3846 q^{24}-4437 q^{23}-1490 q^{22}+2941 q^{21}+5416 q^{20}+3786 q^{19}-1078 q^{18}-5542 q^{17}-5808 q^{16}-1309 q^{15}+4603 q^{14}+7185 q^{13}+3939 q^{12}-2894 q^{11}-7739 q^{10}-6314 q^9+628 q^8+7503 q^7+8244 q^6+1777 q^5-6628 q^4-9612 q^3-4124 q^2+5447 q+10507+6142 q^{-1} -4104 q^{-2} -11067 q^{-3} -7972 q^{-4} +2905 q^{-5} +11522 q^{-6} +9512 q^{-7} -1745 q^{-8} -11949 q^{-9} -11120 q^{-10} +683 q^{-11} +12452 q^{-12} +12692 q^{-13} +580 q^{-14} -12805 q^{-15} -14452 q^{-16} -2098 q^{-17} +12845 q^{-18} +16041 q^{-19} +4053 q^{-20} -12189 q^{-21} -17348 q^{-22} -6227 q^{-23} +10751 q^{-24} +17753 q^{-25} +8442 q^{-26} -8438 q^{-27} -17228 q^{-28} -10111 q^{-29} +5669 q^{-30} +15431 q^{-31} +10948 q^{-32} -2759 q^{-33} -12830 q^{-34} -10704 q^{-35} +387 q^{-36} +9698 q^{-37} +9464 q^{-38} +1260 q^{-39} -6671 q^{-40} -7605 q^{-41} -2009 q^{-42} +4140 q^{-43} +5542 q^{-44} +2039 q^{-45} -2296 q^{-46} -3654 q^{-47} -1678 q^{-48} +1134 q^{-49} +2213 q^{-50} +1149 q^{-51} -505 q^{-52} -1202 q^{-53} -687 q^{-54} +197 q^{-55} +596 q^{-56} +363 q^{-57} -76 q^{-58} -278 q^{-59} -152 q^{-60} +38 q^{-61} +101 q^{-62} +54 q^{-63} -6 q^{-64} -46 q^{-65} -19 q^{-66} +23 q^{-67} +5 q^{-68} -8 q^{-69} +7 q^{-70} -4 q^{-71} -6 q^{-72} +10 q^{-73} - q^{-74} -7 q^{-75} +5 q^{-76} -3 q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{99}-3 q^{98}-q^{97}+5 q^{96}+3 q^{95}+3 q^{94}-7 q^{93}+q^{92}-20 q^{91}-22 q^{90}+18 q^{89}+32 q^{88}+54 q^{87}+17 q^{86}+25 q^{85}-87 q^{84}-163 q^{83}-103 q^{82}-13 q^{81}+173 q^{80}+231 q^{79}+399 q^{78}+107 q^{77}-285 q^{76}-558 q^{75}-671 q^{74}-345 q^{73}+78 q^{72}+1123 q^{71}+1287 q^{70}+906 q^{69}-75 q^{68}-1313 q^{67}-2108 q^{66}-2284 q^{65}-210 q^{64}+1619 q^{63}+3332 q^{62}+3403 q^{61}+1731 q^{60}-1471 q^{59}-5153 q^{58}-5186 q^{57}-3550 q^{56}+1116 q^{55}+5626 q^{54}+8418 q^{53}+6419 q^{52}-429 q^{51}-6301 q^{50}-11243 q^{49}-9559 q^{48}-2996 q^{47}+7650 q^{46}+14542 q^{45}+13180 q^{44}+6295 q^{43}-7167 q^{42}-17038 q^{41}-19757 q^{40}-9175 q^{39}+6499 q^{38}+19415 q^{37}+24979 q^{36}+14471 q^{35}-4302 q^{34}-24547 q^{33}-29339 q^{32}-19470 q^{31}+2206 q^{30}+27183 q^{29}+36305 q^{28}+25837 q^{27}-3605 q^{26}-29444 q^{25}-42448 q^{24}-31230 q^{23}+2436 q^{22}+35598 q^{21}+50409 q^{20}+32157 q^{19}-2674 q^{18}-41619 q^{17}-57393 q^{16}-35657 q^{15}+8980 q^{14}+51329 q^{13}+60034 q^{12}+35865 q^{11}-16628 q^{10}-61270 q^9-66026 q^8-28022 q^7+30543 q^6+68012 q^5+67282 q^4+17310 q^3-46396 q^2-79226 q-58840+2410 q^{-1} +60590 q^{-2} +84289 q^{-3} +45773 q^{-4} -26053 q^{-5} -80175 q^{-6} -77915 q^{-7} -20665 q^{-8} +49855 q^{-9} +92073 q^{-10} +64708 q^{-11} -10744 q^{-12} -79734 q^{-13} -90771 q^{-14} -36351 q^{-15} +44212 q^{-16} +100459 q^{-17} +80423 q^{-18} -484 q^{-19} -83866 q^{-20} -106456 q^{-21} -52531 q^{-22} +40469 q^{-23} +112681 q^{-24} +101514 q^{-25} +15029 q^{-26} -85458 q^{-27} -125207 q^{-28} -77564 q^{-29} +25482 q^{-30} +117454 q^{-31} +124960 q^{-32} +43660 q^{-33} -68995 q^{-34} -131746 q^{-35} -104791 q^{-36} -7096 q^{-37} +98093 q^{-38} +132025 q^{-39} +74597 q^{-40} -31220 q^{-41} -109773 q^{-42} -112822 q^{-43} -41784 q^{-44} +55848 q^{-45} +108329 q^{-46} +84731 q^{-47} +7736 q^{-48} -65639 q^{-49} -90391 q^{-50} -55019 q^{-51} +14490 q^{-52} +65121 q^{-53} +66556 q^{-54} +25304 q^{-55} -24938 q^{-56} -52471 q^{-57} -43133 q^{-58} -5939 q^{-59} +27722 q^{-60} +36934 q^{-61} +21177 q^{-62} -4029 q^{-63} -21967 q^{-64} -22953 q^{-65} -7771 q^{-66} +8304 q^{-67} +14801 q^{-68} +10516 q^{-69} +1149 q^{-70} -6742 q^{-71} -8844 q^{-72} -3789 q^{-73} +1900 q^{-74} +4399 q^{-75} +3493 q^{-76} +881 q^{-77} -1556 q^{-78} -2623 q^{-79} -1076 q^{-80} +450 q^{-81} +964 q^{-82} +782 q^{-83} +256 q^{-84} -251 q^{-85} -638 q^{-86} -161 q^{-87} +145 q^{-88} +128 q^{-89} +98 q^{-90} +41 q^{-91} -4 q^{-92} -140 q^{-93} +8 q^{-94} +47 q^{-95} -8 q^{-96} +2 q^{-97} + q^{-98} +19 q^{-99} -32 q^{-100} +9 q^{-101} +13 q^{-102} -12 q^{-103} +2 q^{-104} -2 q^{-105} +7 q^{-106} -5 q^{-107} +3 q^{-109} -3 q^{-110} + q^{-111} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 83: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 93]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[20, 8, 1, 7], X[18, 13, 19, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[20, 8, 1, 7], X[18, 13, 19, 14], |
|||
X[14, 9, 15, 10], X[10, 3, 11, 4], X[4, 11, 5, 12], |
X[14, 9, 15, 10], X[10, 3, 11, 4], X[4, 11, 5, 12], |
||
X[12, 17, 13, 18], X[8, 20, 9, 19], X[2, 16, 3, 15]]</nowiki></pre></td></tr> |
X[12, 17, 13, 18], X[8, 20, 9, 19], X[2, 16, 3, 15]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 93]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8, |
|||
-4, 9, -3]</nowiki></pre></td></tr> |
-4, 9, -3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 16, 20, 14, 4, 18, 2, 12, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -1, 2, -1, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -1, 2, -1, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 93]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 93]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 93]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_93_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 93]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 93]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 15 2 3 |
|||
-17 + -- - -- + -- + 15 t - 8 t + 2 t |
-17 + -- - -- + -- + 15 t - 8 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 93]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 93]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z + 4 z + 2 z</nowiki></pre></td></tr> |
1 + z + 4 z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 93]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{67, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 93]], KnotSignature[Knot[10, 93]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{67, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 93]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 6 9 10 11 2 3 4 |
|||
-10 - q + -- - -- + -- - -- + -- + 8 q - 5 q + 3 q - q |
-10 - q + -- - -- + -- - -- + -- + 8 q - 5 q + 3 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 93]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 93]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 93]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -12 2 -8 3 2 4 10 12 |
|||
1 - q + q - q - q + --- - q + -- - 2 q + 2 q + q - q |
1 - q + q - q - q + --- - q + -- - 2 q + 2 q + q - q |
||
10 6 |
10 6 |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 93]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 93]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
2 4 2 2 z 2 2 4 2 4 z 2 4 |
|||
2 a - a + 2 z - ---- + 3 a z - 2 a z + 3 z - -- + 3 a z - |
|||
2 2 |
|||
a a |
|||
4 4 6 2 6 |
|||
a z + z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 93]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 2 z 6 z 3 5 2 6 z 2 2 |
2 4 2 z 6 z 3 5 2 6 z 2 2 |
||
-2 a - a - --- - --- - 6 a z - a z + a z - 6 z - ---- + 7 a z + |
-2 a - a - --- - --- - 6 a z - a z + a z - 6 z - ---- + 7 a z + |
||
Line 119: | Line 185: | ||
3 a 2 a |
3 a 2 a |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 93]], Vassiliev[3][Knot[10, 93]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 93]], Vassiliev[3][Knot[10, 93]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 6 1 2 1 4 2 5 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 93]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 6 1 2 1 4 2 5 4 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 134: | Line 202: | ||
5 4 7 4 9 5 |
5 4 7 4 9 5 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 93], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 3 3 3 14 16 4 35 39 7 63 |
|||
35 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
|||
16 15 14 13 12 11 10 9 8 7 |
|||
q q q q q q q q q q |
|||
57 21 85 54 41 88 2 3 4 5 |
|||
-- + -- - -- + -- + -- - -- + 52 q - 71 q + 11 q + 48 q - 42 q - |
|||
6 5 4 3 2 q |
|||
q q q q q |
|||
6 7 8 9 10 11 12 13 |
|||
6 q + 31 q - 14 q - 9 q + 11 q - q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 16:58, 29 August 2005
|
|
Visit 10 93's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 93's page at Knotilus! Visit 10 93's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X16,6,17,5 X20,8,1,7 X18,13,19,14 X14,9,15,10 X10,3,11,4 X4,11,5,12 X12,17,13,18 X8,20,9,19 X2,16,3,15 |
Gauss code | 1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8, -4, 9, -3 |
Dowker-Thistlethwaite code | 6 10 16 20 14 4 18 2 12 8 |
Conway Notation | [.3.20.2] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+15 t-17+15 t^{-1} -8 t^{-2} +2 t^{-3} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 67, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^4+3 q^3-5 q^2+8 q-10+11 q^{-1} -10 q^{-2} +9 q^{-3} -6 q^{-4} +3 q^{-5} - q^{-6} } |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+q^{16}-q^{14}-q^{12}+2 q^{10}-q^8+3 q^6+1-2 q^{-2} +2 q^{-4} + q^{-10} - q^{-12} } |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{34}+q^{32}+3 q^{30}-8 q^{28}+5 q^{26}+6 q^{24}-15 q^{22}+8 q^{20}+11 q^{18}-17 q^{16}+q^{14}+15 q^{12}-7 q^{10}-10 q^8+10 q^6+7 q^4-12 q^2-1+16 q^{-2} -8 q^{-4} -12 q^{-6} +17 q^{-8} -17 q^{-12} +11 q^{-14} +8 q^{-16} -12 q^{-18} + q^{-20} +7 q^{-22} -3 q^{-24} -2 q^{-26} + q^{-28} } |
3 | |
4 | |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{165}+2 q^{163}-q^{161}-q^{159}+4 q^{157}-3 q^{155}-3 q^{153}+4 q^{151}+q^{149}-3 q^{147}-q^{145}-2 q^{143}+4 q^{141}+17 q^{139}+4 q^{137}-38 q^{135}-51 q^{133}+11 q^{131}+107 q^{129}+122 q^{127}-11 q^{125}-243 q^{123}-313 q^{121}-4 q^{119}+491 q^{117}+650 q^{115}+115 q^{113}-809 q^{111}-1238 q^{109}-452 q^{107}+1165 q^{105}+2102 q^{103}+1111 q^{101}-1341 q^{99}-3132 q^{97}-2242 q^{95}+1087 q^{93}+4093 q^{91}+3762 q^{89}-189 q^{87}-4564 q^{85}-5343 q^{83}-1421 q^{81}+4137 q^{79}+6533 q^{77}+3434 q^{75}-2725 q^{73}-6744 q^{71}-5260 q^{69}+473 q^{67}+5755 q^{65}+6348 q^{63}+1950 q^{61}-3729 q^{59}-6235 q^{57}-3913 q^{55}+1169 q^{53}+5053 q^{51}+4933 q^{49}+1182 q^{47}-3207 q^{45}-4919 q^{43}-2825 q^{41}+1304 q^{39}+4200 q^{37}+3584 q^{35}+111 q^{33}-3238 q^{31}-3631 q^{29}-850 q^{27}+2482 q^{25}+3338 q^{23}+1013 q^{21}-2167 q^{19}-3097 q^{17}-875 q^{15}+2273 q^{13}+3155 q^{11}+796 q^9-2574 q^7-3589 q^5-1047 q^3+2801 q+4256 q^{-1} +1732 q^{-3} -2633 q^{-5} -4896 q^{-7} -2840 q^{-9} +1912 q^{-11} +5210 q^{-13} +4099 q^{-15} -572 q^{-17} -4877 q^{-19} -5195 q^{-21} -1220 q^{-23} +3785 q^{-25} +5716 q^{-27} +3068 q^{-29} -1949 q^{-31} -5348 q^{-33} -4535 q^{-35} -285 q^{-37} +4033 q^{-39} +5138 q^{-41} +2370 q^{-43} -1972 q^{-45} -4632 q^{-47} -3791 q^{-49} -286 q^{-51} +3173 q^{-53} +4111 q^{-55} +2099 q^{-57} -1171 q^{-59} -3339 q^{-61} -3014 q^{-63} -671 q^{-65} +1861 q^{-67} +2843 q^{-69} +1819 q^{-71} -260 q^{-73} -1892 q^{-75} -2060 q^{-77} -872 q^{-79} +691 q^{-81} +1552 q^{-83} +1277 q^{-85} +262 q^{-87} -733 q^{-89} -1082 q^{-91} -688 q^{-93} +51 q^{-95} +584 q^{-97} +638 q^{-99} +307 q^{-101} -134 q^{-103} -382 q^{-105} -329 q^{-107} -95 q^{-109} +117 q^{-111} +198 q^{-113} +145 q^{-115} +16 q^{-117} -75 q^{-119} -85 q^{-121} -43 q^{-123} +2 q^{-125} +30 q^{-127} +31 q^{-129} +8 q^{-131} -6 q^{-133} -8 q^{-135} -5 q^{-137} -2 q^{-139} +3 q^{-141} +2 q^{-143} - q^{-145} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+q^{16}-q^{14}-q^{12}+2 q^{10}-q^8+3 q^6+1-2 q^{-2} +2 q^{-4} + q^{-10} - q^{-12} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-4 q^{50}+8 q^{48}-12 q^{46}+20 q^{44}-32 q^{42}+44 q^{40}-56 q^{38}+75 q^{36}-98 q^{34}+116 q^{32}-140 q^{30}+167 q^{28}-198 q^{26}+222 q^{24}-242 q^{22}+251 q^{20}-222 q^{18}+160 q^{16}-60 q^{14}-77 q^{12}+238 q^{10}-398 q^8+532 q^6-619 q^4+666 q^2-640+566 q^{-2} -444 q^{-4} +288 q^{-6} -118 q^{-8} -58 q^{-10} +201 q^{-12} -314 q^{-14} +382 q^{-16} -388 q^{-18} +352 q^{-20} -284 q^{-22} +212 q^{-24} -136 q^{-26} +74 q^{-28} -38 q^{-30} +14 q^{-32} -4 q^{-34} + q^{-36} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-2 q^{40}-q^{38}+6 q^{36}-3 q^{34}-7 q^{32}+10 q^{30}-q^{28}-12 q^{26}+11 q^{24}+2 q^{22}-13 q^{20}+8 q^{18}+4 q^{16}-9 q^{14}+3 q^{12}+4 q^{10}+2 q^8-5 q^6+2 q^4+11 q^2-8- q^{-2} +12 q^{-4} -8 q^{-6} -3 q^{-8} +10 q^{-10} -8 q^{-12} -2 q^{-14} +7 q^{-16} -6 q^{-18} + q^{-20} +2 q^{-22} -2 q^{-24} + q^{-26} } |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{64}-2 q^{62}+q^{60}+6 q^{58}+3 q^{56}-6 q^{54}-9 q^{52}-q^{50}+13 q^{48}+8 q^{46}-9 q^{44}-15 q^{42}+17 q^{38}+8 q^{36}-13 q^{34}-15 q^{32}+7 q^{30}+17 q^{28}-17 q^{24}-5 q^{22}+14 q^{20}+10 q^{18}-10 q^{16}-10 q^{14}+7 q^{12}+11 q^{10}-5 q^8-11 q^6+5 q^4+15 q^2+1-17 q^{-2} -7 q^{-4} +16 q^{-6} +16 q^{-8} -8 q^{-10} -21 q^{-12} - q^{-14} +19 q^{-16} +10 q^{-18} -13 q^{-20} -15 q^{-22} +5 q^{-24} +14 q^{-26} + q^{-28} -9 q^{-30} -5 q^{-32} +5 q^{-34} +4 q^{-36} -2 q^{-38} -2 q^{-40} + q^{-44} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-2 q^{56}+q^{54}-2 q^{52}+6 q^{50}-6 q^{48}+5 q^{46}-9 q^{44}+13 q^{42}-12 q^{40}+11 q^{38}-15 q^{36}+14 q^{34}-12 q^{32}+10 q^{30}-9 q^{28}+3 q^{26}+q^{24}-6 q^{22}+12 q^{20}-17 q^{18}+22 q^{16}-24 q^{14}+29 q^{12}-28 q^{10}+30 q^8-25 q^6+25 q^4-19 q^2+17-7 q^{-2} +5 q^{-4} -6 q^{-8} +11 q^{-10} -13 q^{-12} +13 q^{-14} -17 q^{-16} +16 q^{-18} -15 q^{-20} +12 q^{-22} -11 q^{-24} +9 q^{-26} -6 q^{-28} +4 q^{-30} -2 q^{-32} + q^{-34} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 93"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-8 t^2+15 t-17+15 t^{-1} -8 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 67, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^4+3 q^3-5 q^2+8 q-10+11 q^{-1} -10 q^{-2} +9 q^{-3} -6 q^{-4} +3 q^{-5} - q^{-6} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 93. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.