10 127: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_150]], [[K11n51]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 70: | ||
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math> q^{-3} +2 q^{-4} -4 q^{-5} + q^{-6} +8 q^{-7} -9 q^{-8} -4 q^{-9} +17 q^{-10} -12 q^{-11} -11 q^{-12} +25 q^{-13} -12 q^{-14} -17 q^{-15} +28 q^{-16} -9 q^{-17} -17 q^{-18} +22 q^{-19} -4 q^{-20} -12 q^{-21} +11 q^{-22} -6 q^{-24} +4 q^{-25} -2 q^{-27} + q^{-28} </math>|J3=<math>2 q^{-4} -6 q^{-7} +4 q^{-8} +7 q^{-9} +3 q^{-10} -16 q^{-11} -4 q^{-12} +14 q^{-13} +19 q^{-14} -22 q^{-15} -23 q^{-16} +12 q^{-17} +40 q^{-18} -12 q^{-19} -45 q^{-20} +56 q^{-22} +6 q^{-23} -61 q^{-24} -14 q^{-25} +65 q^{-26} +22 q^{-27} -68 q^{-28} -26 q^{-29} +65 q^{-30} +32 q^{-31} -62 q^{-32} -31 q^{-33} +49 q^{-34} +36 q^{-35} -42 q^{-36} -29 q^{-37} +25 q^{-38} +27 q^{-39} -16 q^{-40} -19 q^{-41} +7 q^{-42} +13 q^{-43} -3 q^{-44} -8 q^{-45} +2 q^{-46} +4 q^{-47} - q^{-48} -3 q^{-49} +2 q^{-50} + q^{-51} -2 q^{-53} + q^{-54} </math>|J4=<math> q^{-4} +2 q^{-5} -4 q^{-7} -2 q^{-8} -3 q^{-9} +9 q^{-10} +12 q^{-11} -5 q^{-12} -8 q^{-13} -25 q^{-14} +6 q^{-15} +33 q^{-16} +11 q^{-17} +8 q^{-18} -57 q^{-19} -27 q^{-20} +32 q^{-21} +34 q^{-22} +63 q^{-23} -62 q^{-24} -69 q^{-25} -13 q^{-26} +26 q^{-27} +138 q^{-28} -24 q^{-29} -85 q^{-30} -80 q^{-31} -24 q^{-32} +196 q^{-33} +35 q^{-34} -68 q^{-35} -136 q^{-36} -89 q^{-37} +229 q^{-38} +84 q^{-39} -41 q^{-40} -170 q^{-41} -140 q^{-42} +242 q^{-43} +115 q^{-44} -15 q^{-45} -187 q^{-46} -172 q^{-47} +234 q^{-48} +131 q^{-49} +13 q^{-50} -176 q^{-51} -189 q^{-52} +187 q^{-53} +125 q^{-54} +51 q^{-55} -128 q^{-56} -181 q^{-57} +109 q^{-58} +85 q^{-59} +75 q^{-60} -54 q^{-61} -133 q^{-62} +38 q^{-63} +25 q^{-64} +64 q^{-65} + q^{-66} -68 q^{-67} +11 q^{-68} -14 q^{-69} +31 q^{-70} +14 q^{-71} -24 q^{-72} +11 q^{-73} -17 q^{-74} +8 q^{-75} +6 q^{-76} -9 q^{-77} +11 q^{-78} -7 q^{-79} + q^{-80} + q^{-81} -5 q^{-82} +5 q^{-83} - q^{-84} + q^{-85} -2 q^{-87} + q^{-88} </math>|J5=<math>2 q^{-4} +2 q^{-6} -2 q^{-7} -6 q^{-8} -6 q^{-9} +6 q^{-10} +4 q^{-11} +15 q^{-12} +12 q^{-13} -14 q^{-14} -28 q^{-15} -15 q^{-16} -8 q^{-17} +30 q^{-18} +56 q^{-19} +23 q^{-20} -34 q^{-21} -52 q^{-22} -70 q^{-23} -11 q^{-24} +79 q^{-25} +97 q^{-26} +45 q^{-27} -26 q^{-28} -125 q^{-29} -125 q^{-30} -5 q^{-31} +102 q^{-32} +158 q^{-33} +124 q^{-34} -64 q^{-35} -206 q^{-36} -183 q^{-37} -43 q^{-38} +178 q^{-39} +304 q^{-40} +146 q^{-41} -152 q^{-42} -335 q^{-43} -284 q^{-44} +51 q^{-45} +400 q^{-46} +399 q^{-47} +31 q^{-48} -389 q^{-49} -509 q^{-50} -149 q^{-51} +393 q^{-52} +594 q^{-53} +237 q^{-54} -365 q^{-55} -660 q^{-56} -321 q^{-57} +344 q^{-58} +707 q^{-59} +388 q^{-60} -326 q^{-61} -741 q^{-62} -433 q^{-63} +301 q^{-64} +767 q^{-65} +478 q^{-66} -289 q^{-67} -775 q^{-68} -511 q^{-69} +251 q^{-70} +779 q^{-71} +549 q^{-72} -217 q^{-73} -750 q^{-74} -570 q^{-75} +131 q^{-76} +709 q^{-77} +598 q^{-78} -70 q^{-79} -611 q^{-80} -579 q^{-81} -47 q^{-82} +502 q^{-83} +557 q^{-84} +107 q^{-85} -353 q^{-86} -469 q^{-87} -188 q^{-88} +218 q^{-89} +377 q^{-90} +201 q^{-91} -93 q^{-92} -258 q^{-93} -195 q^{-94} +6 q^{-95} +157 q^{-96} +152 q^{-97} +42 q^{-98} -73 q^{-99} -105 q^{-100} -54 q^{-101} +19 q^{-102} +59 q^{-103} +47 q^{-104} +8 q^{-105} -25 q^{-106} -33 q^{-107} -16 q^{-108} +9 q^{-109} +13 q^{-110} +14 q^{-111} +7 q^{-112} -9 q^{-113} -10 q^{-114} - q^{-115} -3 q^{-116} +2 q^{-117} +9 q^{-118} + q^{-119} -4 q^{-120} + q^{-121} -3 q^{-122} -3 q^{-123} +3 q^{-124} +2 q^{-125} - q^{-126} + q^{-127} -2 q^{-129} + q^{-130} </math>|J6=<math> q^{-3} +2 q^{-4} -2 q^{-7} -4 q^{-8} -8 q^{-9} -3 q^{-10} +9 q^{-11} +16 q^{-12} +13 q^{-13} +8 q^{-14} - q^{-15} -37 q^{-16} -41 q^{-17} -22 q^{-18} +21 q^{-19} +44 q^{-20} +62 q^{-21} +73 q^{-22} -19 q^{-23} -83 q^{-24} -122 q^{-25} -66 q^{-26} -20 q^{-27} +79 q^{-28} +207 q^{-29} +133 q^{-30} +30 q^{-31} -140 q^{-32} -168 q^{-33} -237 q^{-34} -128 q^{-35} +165 q^{-36} +258 q^{-37} +298 q^{-38} +117 q^{-39} +14 q^{-40} -348 q^{-41} -470 q^{-42} -225 q^{-43} +16 q^{-44} +368 q^{-45} +475 q^{-46} +590 q^{-47} -9 q^{-48} -527 q^{-49} -691 q^{-50} -629 q^{-51} -86 q^{-52} +489 q^{-53} +1213 q^{-54} +738 q^{-55} -28 q^{-56} -788 q^{-57} -1288 q^{-58} -950 q^{-59} -38 q^{-60} +1470 q^{-61} +1492 q^{-62} +844 q^{-63} -395 q^{-64} -1602 q^{-65} -1819 q^{-66} -878 q^{-67} +1303 q^{-68} +1954 q^{-69} +1696 q^{-70} +234 q^{-71} -1564 q^{-72} -2423 q^{-73} -1661 q^{-74} +952 q^{-75} +2121 q^{-76} +2292 q^{-77} +783 q^{-78} -1381 q^{-79} -2751 q^{-80} -2189 q^{-81} +659 q^{-82} +2147 q^{-83} +2629 q^{-84} +1119 q^{-85} -1231 q^{-86} -2915 q^{-87} -2479 q^{-88} +484 q^{-89} +2145 q^{-90} +2817 q^{-91} +1314 q^{-92} -1121 q^{-93} -3001 q^{-94} -2667 q^{-95} +308 q^{-96} +2095 q^{-97} +2937 q^{-98} +1528 q^{-99} -905 q^{-100} -2958 q^{-101} -2827 q^{-102} -46 q^{-103} +1822 q^{-104} +2907 q^{-105} +1814 q^{-106} -411 q^{-107} -2582 q^{-108} -2826 q^{-109} -580 q^{-110} +1161 q^{-111} +2490 q^{-112} +1970 q^{-113} +297 q^{-114} -1740 q^{-115} -2399 q^{-116} -1001 q^{-117} +269 q^{-118} +1601 q^{-119} +1699 q^{-120} +834 q^{-121} -702 q^{-122} -1524 q^{-123} -971 q^{-124} -381 q^{-125} +604 q^{-126} +1022 q^{-127} +867 q^{-128} +9 q^{-129} -620 q^{-130} -544 q^{-131} -504 q^{-132} -11 q^{-133} +358 q^{-134} +529 q^{-135} +196 q^{-136} -107 q^{-137} -125 q^{-138} -298 q^{-139} -157 q^{-140} +22 q^{-141} +204 q^{-142} +110 q^{-143} +26 q^{-144} +53 q^{-145} -104 q^{-146} -95 q^{-147} -48 q^{-148} +55 q^{-149} +23 q^{-150} +12 q^{-151} +67 q^{-152} -21 q^{-153} -32 q^{-154} -33 q^{-155} +14 q^{-156} -5 q^{-157} -7 q^{-158} +39 q^{-159} -4 q^{-161} -15 q^{-162} +5 q^{-163} -7 q^{-164} -11 q^{-165} +17 q^{-166} +2 q^{-167} +3 q^{-168} -5 q^{-169} +3 q^{-170} -3 q^{-171} -7 q^{-172} +5 q^{-173} +2 q^{-175} - q^{-176} + q^{-177} -2 q^{-179} + q^{-180} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 127]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1], |
|||
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
||
X[19, 12, 20, 13], X[6, 14, 7, 13], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[19, 12, 20, 13], X[6, 14, 7, 13], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 127]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, |
|||
6, -8, 4]</nowiki></pre></td></tr> |
6, -8, 4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -14, 2, 16, 18, -6, 20, 10, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 127]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 127]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 127]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_127_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 127]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 127]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 6 2 3 |
|||
7 - t + -- - - - 6 t + 4 t - t |
7 - t + -- - - - 6 t + 4 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 127]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 127]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z - 2 z - z</nowiki></pre></td></tr> |
1 + z - 2 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 127]], KnotSignature[Knot[10, 127]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{29, -4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 127]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 3 5 5 5 4 2 2 |
|||
q - -- + -- - -- + -- - -- + -- - -- + -- |
q - -- + -- - -- + -- - -- + -- - -- + -- |
||
9 8 7 6 5 4 3 2 |
9 8 7 6 5 4 3 2 |
||
q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 127]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 127]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 127]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -30 -26 2 -20 3 -12 3 -8 2 |
|||
q + q - --- - q - --- + q + --- + q + -- |
q + q - --- - q - --- + q + --- + q + -- |
||
22 18 10 6 |
22 18 10 6 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 127]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 127]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 4 2 6 2 8 2 4 4 6 4 |
|||
5 a - 6 a + 2 a + 7 a z - 9 a z + 3 a z + 2 a z - 5 a z + |
|||
8 4 6 6 |
|||
a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 127]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 5 7 9 11 4 2 |
|||
5 a + 6 a + 2 a - 5 a z - 8 a z - 2 a z + a z - 9 a z - |
5 a + 6 a + 2 a - 5 a z - 8 a z - 2 a z + a z - 9 a z - |
||
Line 102: | Line 164: | ||
8 6 10 6 5 7 7 7 9 7 6 8 8 8 |
8 6 10 6 5 7 7 7 9 7 6 8 8 8 |
||
2 a z + 2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
2 a z + 2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 127]], Vassiliev[3][Knot[10, 127]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 127]], Vassiliev[3][Knot[10, 127]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 1 1 1 2 1 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 127]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 1 1 1 2 1 3 |
|||
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
3 21 8 19 7 17 7 17 6 15 6 15 5 |
3 21 8 19 7 17 7 17 6 15 6 15 5 |
||
Line 119: | Line 183: | ||
5 |
5 |
||
q t</nowiki></pre></td></tr> |
q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 127], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 2 4 6 11 12 4 22 17 9 28 |
|||
q - --- + --- - --- + --- - --- - --- + --- - --- - --- + --- - |
|||
27 25 24 22 21 20 19 18 17 16 |
|||
q q q q q q q q q q |
|||
17 12 25 11 12 17 4 9 8 -6 4 2 -3 |
|||
--- - --- + --- - --- - --- + --- - -- - -- + -- + q - -- + -- + q |
|||
15 14 13 12 11 10 9 8 7 5 4 |
|||
q q q q q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:24, 29 August 2005
|
|
Visit 10 127's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 127's page at Knotilus! Visit 10 127's page at the original Knot Atlas! |
10 127 Further Notes and Views
Knot presentations
Planar diagram presentation | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X6,14,7,13 X7283 |
Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 16 18 -6 20 10 12 |
Conway Notation | [41,21,2-] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 127"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_150, K11n51, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 127. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.