6 2: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 6, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 38: | Line 68: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^4-q^3-q^2+3 q-1-3 q^{-1} +5 q^{-2} - q^{-3} -5 q^{-4} +6 q^{-5} -6 q^{-7} +6 q^{-8} -5 q^{-10} +4 q^{-11} -2 q^{-13} + q^{-14} </math>|J3=<math>q^9-q^8-q^7+3 q^5-3 q^3-2 q^2+5 q+2-4 q^{-1} -5 q^{-2} +6 q^{-3} +5 q^{-4} -4 q^{-5} -7 q^{-6} +5 q^{-7} +8 q^{-8} -4 q^{-9} -10 q^{-10} +4 q^{-11} +10 q^{-12} -4 q^{-13} -10 q^{-14} +3 q^{-15} +10 q^{-16} -3 q^{-17} -8 q^{-18} +2 q^{-19} +7 q^{-20} -2 q^{-21} -4 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-27} </math>|J4=<math>q^{16}-q^{15}-q^{14}+4 q^{11}-q^{10}-2 q^9-2 q^8-3 q^7+8 q^6+q^5-q^4-4 q^3-8 q^2+10 q+3+3 q^{-1} -4 q^{-2} -14 q^{-3} +10 q^{-4} +3 q^{-5} +8 q^{-6} -2 q^{-7} -19 q^{-8} +8 q^{-9} +2 q^{-10} +13 q^{-11} -24 q^{-13} +6 q^{-14} +2 q^{-15} +17 q^{-16} + q^{-17} -26 q^{-18} +4 q^{-19} +2 q^{-20} +20 q^{-21} +2 q^{-22} -26 q^{-23} +3 q^{-24} + q^{-25} +18 q^{-26} +3 q^{-27} -22 q^{-28} +2 q^{-29} - q^{-30} +13 q^{-31} +3 q^{-32} -14 q^{-33} +3 q^{-34} -2 q^{-35} +6 q^{-36} +2 q^{-37} -6 q^{-38} +2 q^{-39} - q^{-40} +2 q^{-41} -2 q^{-43} + q^{-44} </math>|J5=<math>q^{25}-q^{24}-q^{23}+q^{20}+3 q^{19}-3 q^{17}-2 q^{16}-2 q^{15}+6 q^{13}+4 q^{12}-q^{11}-4 q^{10}-6 q^9-4 q^8+6 q^7+8 q^6+4 q^5-q^4-9 q^3-10 q^2+2 q+8+9 q^{-1} +6 q^{-2} -7 q^{-3} -15 q^{-4} -4 q^{-5} +4 q^{-6} +12 q^{-7} +13 q^{-8} -2 q^{-9} -16 q^{-10} -13 q^{-11} - q^{-12} +13 q^{-13} +19 q^{-14} +4 q^{-15} -17 q^{-16} -19 q^{-17} -6 q^{-18} +15 q^{-19} +24 q^{-20} +8 q^{-21} -17 q^{-22} -25 q^{-23} -10 q^{-24} +17 q^{-25} +28 q^{-26} +11 q^{-27} -18 q^{-28} -29 q^{-29} -12 q^{-30} +18 q^{-31} +29 q^{-32} +13 q^{-33} -16 q^{-34} -30 q^{-35} -13 q^{-36} +15 q^{-37} +26 q^{-38} +14 q^{-39} -11 q^{-40} -25 q^{-41} -13 q^{-42} +10 q^{-43} +19 q^{-44} +11 q^{-45} -4 q^{-46} -16 q^{-47} -9 q^{-48} +4 q^{-49} +9 q^{-50} +6 q^{-51} -2 q^{-52} -5 q^{-53} -4 q^{-54} +5 q^{-56} + q^{-57} -2 q^{-58} - q^{-61} +2 q^{-62} -2 q^{-64} + q^{-65} </math>|J6=<math>q^{36}-q^{35}-q^{34}+q^{31}+4 q^{29}-q^{28}-3 q^{27}-2 q^{26}-2 q^{25}-q^{23}+10 q^{22}+2 q^{21}-q^{20}-3 q^{19}-5 q^{18}-5 q^{17}-8 q^{16}+14 q^{15}+6 q^{14}+5 q^{13}+q^{12}-3 q^{11}-10 q^{10}-19 q^9+11 q^8+4 q^7+11 q^6+8 q^5+8 q^4-9 q^3-29 q^2+5 q-6+10 q^{-1} +13 q^{-2} +23 q^{-3} - q^{-4} -32 q^{-5} -20 q^{-7} +2 q^{-8} +13 q^{-9} +38 q^{-10} +10 q^{-11} -29 q^{-12} -2 q^{-13} -33 q^{-14} -9 q^{-15} +9 q^{-16} +50 q^{-17} +21 q^{-18} -24 q^{-19} -2 q^{-20} -44 q^{-21} -19 q^{-22} +4 q^{-23} +60 q^{-24} +29 q^{-25} -19 q^{-26} -3 q^{-27} -53 q^{-28} -26 q^{-29} + q^{-30} +70 q^{-31} +35 q^{-32} -16 q^{-33} -6 q^{-34} -61 q^{-35} -29 q^{-36} + q^{-37} +76 q^{-38} +39 q^{-39} -14 q^{-40} -8 q^{-41} -65 q^{-42} -32 q^{-43} +77 q^{-45} +41 q^{-46} -10 q^{-47} -7 q^{-48} -63 q^{-49} -35 q^{-50} -5 q^{-51} +70 q^{-52} +40 q^{-53} -4 q^{-54} - q^{-55} -53 q^{-56} -34 q^{-57} -11 q^{-58} +54 q^{-59} +32 q^{-60} +7 q^{-62} -36 q^{-63} -26 q^{-64} -13 q^{-65} +33 q^{-66} +18 q^{-67} - q^{-68} +11 q^{-69} -17 q^{-70} -14 q^{-71} -9 q^{-72} +16 q^{-73} +6 q^{-74} -3 q^{-75} +7 q^{-76} -6 q^{-77} -4 q^{-78} -4 q^{-79} +7 q^{-80} -3 q^{-82} +4 q^{-83} -2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math>|J7=<math>q^{49}-q^{48}-q^{47}+q^{44}+q^{42}+3 q^{41}-q^{40}-3 q^{39}-2 q^{38}-3 q^{37}+q^{36}+q^{34}+9 q^{33}+3 q^{32}-q^{31}-3 q^{30}-8 q^{29}-3 q^{28}-5 q^{27}-4 q^{26}+12 q^{25}+9 q^{24}+7 q^{23}+5 q^{22}-9 q^{21}-5 q^{20}-12 q^{19}-16 q^{18}+6 q^{17}+7 q^{16}+13 q^{15}+18 q^{14}+q^{13}+3 q^{12}-12 q^{11}-28 q^{10}-6 q^9-7 q^8+6 q^7+25 q^6+14 q^5+21 q^4-29 q^2-14 q-25-15 q^{-1} +19 q^{-2} +19 q^{-3} +40 q^{-4} +22 q^{-5} -18 q^{-6} -11 q^{-7} -41 q^{-8} -38 q^{-9} +2 q^{-10} +12 q^{-11} +51 q^{-12} +46 q^{-13} + q^{-14} - q^{-15} -48 q^{-16} -59 q^{-17} -17 q^{-18} -4 q^{-19} +55 q^{-20} +67 q^{-21} +20 q^{-22} +14 q^{-23} -51 q^{-24} -75 q^{-25} -36 q^{-26} -19 q^{-27} +55 q^{-28} +82 q^{-29} +38 q^{-30} +27 q^{-31} -52 q^{-32} -90 q^{-33} -49 q^{-34} -30 q^{-35} +57 q^{-36} +95 q^{-37} +52 q^{-38} +34 q^{-39} -56 q^{-40} -102 q^{-41} -58 q^{-42} -34 q^{-43} +60 q^{-44} +106 q^{-45} +61 q^{-46} +35 q^{-47} -61 q^{-48} -112 q^{-49} -63 q^{-50} -36 q^{-51} +63 q^{-52} +114 q^{-53} +66 q^{-54} +36 q^{-55} -63 q^{-56} -115 q^{-57} -68 q^{-58} -40 q^{-59} +61 q^{-60} +116 q^{-61} +71 q^{-62} +41 q^{-63} -57 q^{-64} -111 q^{-65} -71 q^{-66} -47 q^{-67} +49 q^{-68} +107 q^{-69} +72 q^{-70} +49 q^{-71} -43 q^{-72} -94 q^{-73} -66 q^{-74} -52 q^{-75} +28 q^{-76} +83 q^{-77} +63 q^{-78} +50 q^{-79} -23 q^{-80} -67 q^{-81} -47 q^{-82} -47 q^{-83} +9 q^{-84} +51 q^{-85} +39 q^{-86} +41 q^{-87} -8 q^{-88} -35 q^{-89} -24 q^{-90} -31 q^{-91} +2 q^{-92} +22 q^{-93} +14 q^{-94} +23 q^{-95} + q^{-96} -16 q^{-97} -8 q^{-98} -13 q^{-99} +3 q^{-100} +7 q^{-101} - q^{-102} +10 q^{-103} +2 q^{-104} -6 q^{-105} -2 q^{-106} -4 q^{-107} +3 q^{-108} +2 q^{-109} -4 q^{-110} +3 q^{-111} +2 q^{-112} -2 q^{-113} - q^{-115} +2 q^{-116} -2 q^{-118} + q^{-119} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 45: | Line 78: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[6, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
||
⚫ | |||
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></pre></td></tr> |
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[6, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[6, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:6_2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
⚫ | <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[6, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {3, 4}, 1}</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
-3 - t + - + 3 t - t |
-3 - t + - + 3 t - t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[6, 2]][z]</nowiki></pre></td></tr> |
||
⚫ | |||
1 - z - z</nowiki></pre></td></tr> |
1 - z - z</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{11, -2}</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
-1 + q - -- + -- - -- + - + q |
-1 + q - -- + -- - -- + - + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[6, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -8 -4 -2 2 4 |
|||
1 + q - q - q + q + q + q</nowiki></pre></td></tr> |
1 + q - q - q + q + q + q</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[6, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 2 2 2 4 2 2 4 |
|||
2 - 2 a + a + z - 3 a z + a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[6, 2]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 3 5 2 2 2 4 2 6 2 |
|||
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z - |
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z - |
||
3 5 3 4 2 4 4 4 5 3 5 |
3 5 3 4 2 4 4 4 5 3 5 |
||
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 1}</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[6, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 1 1 1 1 1 1 1 t |
|||
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - + |
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - + |
||
q 11 4 9 3 7 3 7 2 5 2 5 3 q |
q 11 4 9 3 7 3 7 2 5 2 5 3 q |
||
Line 94: | Line 155: | ||
3 2 |
3 2 |
||
q t</nowiki></pre></td></tr> |
q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[6, 2], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 2 4 5 6 6 6 5 -3 5 3 |
|||
-1 + q - --- + --- - --- + -- - -- + -- - -- - q + -- - - + 3 q - |
|||
13 11 10 8 7 5 4 2 q |
|||
q q q q q q q q |
|||
2 3 4 |
|||
q - q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:04, 29 August 2005
|
|
Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 6 2's page at Knotilus! Visit 6 2's page at the original Knot Atlas! Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research. The bowline knot of practical knot tying deforms to 6_2. |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7 |
Gauss code | -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 6 |
Conway Notation | [312] |
Length is 6, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["6 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.