10 58: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 6. |
|||
[[Invariants from Braid Theory|Braid index]] is 6. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 75: | ||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+q^{10}+4 q^9-10 q^8+7 q^7+12 q^6-32 q^5+20 q^4+30 q^3-66 q^2+29 q+57-91 q^{-1} +23 q^{-2} +76 q^{-3} -91 q^{-4} +6 q^{-5} +78 q^{-6} -68 q^{-7} -12 q^{-8} +63 q^{-9} -36 q^{-10} -20 q^{-11} +36 q^{-12} -10 q^{-13} -13 q^{-14} +11 q^{-15} -3 q^{-17} + q^{-18} </math>|J3=<math>q^{24}-2 q^{23}+q^{22}+2 q^{20}-5 q^{19}+4 q^{18}+2 q^{17}-5 q^{16}-8 q^{15}+22 q^{14}+5 q^{13}-37 q^{12}-21 q^{11}+80 q^{10}+33 q^9-120 q^8-72 q^7+171 q^6+125 q^5-215 q^4-190 q^3+242 q^2+259 q-247-320 q^{-1} +229 q^{-2} +370 q^{-3} -198 q^{-4} -393 q^{-5} +146 q^{-6} +403 q^{-7} -92 q^{-8} -392 q^{-9} +31 q^{-10} +366 q^{-11} +31 q^{-12} -328 q^{-13} -81 q^{-14} +269 q^{-15} +130 q^{-16} -210 q^{-17} -151 q^{-18} +138 q^{-19} +157 q^{-20} -77 q^{-21} -136 q^{-22} +22 q^{-23} +109 q^{-24} +5 q^{-25} -69 q^{-26} -20 q^{-27} +38 q^{-28} +20 q^{-29} -17 q^{-30} -13 q^{-31} +6 q^{-32} +5 q^{-33} -3 q^{-35} + q^{-36} </math>|J4=<math>q^{40}-2 q^{39}+q^{38}-2 q^{36}+7 q^{35}-8 q^{34}+4 q^{33}-q^{32}-11 q^{31}+25 q^{30}-15 q^{29}+11 q^{28}-15 q^{27}-45 q^{26}+73 q^{25}+10 q^{24}+36 q^{23}-85 q^{22}-173 q^{21}+155 q^{20}+152 q^{19}+179 q^{18}-229 q^{17}-550 q^{16}+148 q^{15}+464 q^{14}+639 q^{13}-300 q^{12}-1234 q^{11}-182 q^{10}+755 q^9+1456 q^8-29 q^7-1959 q^6-867 q^5+712 q^4+2296 q^3+600 q^2-2318 q-1568+273 q^{-1} +2743 q^{-2} +1280 q^{-3} -2192 q^{-4} -1939 q^{-5} -311 q^{-6} +2691 q^{-7} +1722 q^{-8} -1742 q^{-9} -1928 q^{-10} -840 q^{-11} +2279 q^{-12} +1905 q^{-13} -1119 q^{-14} -1659 q^{-15} -1274 q^{-16} +1629 q^{-17} +1873 q^{-18} -392 q^{-19} -1172 q^{-20} -1561 q^{-21} +812 q^{-22} +1571 q^{-23} +276 q^{-24} -490 q^{-25} -1520 q^{-26} +26 q^{-27} +963 q^{-28} +608 q^{-29} +188 q^{-30} -1071 q^{-31} -412 q^{-32} +277 q^{-33} +482 q^{-34} +529 q^{-35} -456 q^{-36} -383 q^{-37} -135 q^{-38} +148 q^{-39} +446 q^{-40} -56 q^{-41} -143 q^{-42} -175 q^{-43} -53 q^{-44} +198 q^{-45} +41 q^{-46} +5 q^{-47} -71 q^{-48} -62 q^{-49} +47 q^{-50} +15 q^{-51} +20 q^{-52} -10 q^{-53} -20 q^{-54} +6 q^{-55} +5 q^{-57} -3 q^{-59} + q^{-60} </math>|J5=<math>q^{60}-2 q^{59}+q^{58}-2 q^{56}+3 q^{55}+4 q^{54}-8 q^{53}+q^{52}+3 q^{51}-8 q^{50}+10 q^{49}+14 q^{48}-21 q^{47}-9 q^{46}+3 q^{45}-4 q^{44}+36 q^{43}+41 q^{42}-47 q^{41}-82 q^{40}-45 q^{39}+34 q^{38}+184 q^{37}+181 q^{36}-96 q^{35}-365 q^{34}-366 q^{33}+36 q^{32}+668 q^{31}+826 q^{30}+63 q^{29}-1048 q^{28}-1507 q^{27}-542 q^{26}+1488 q^{25}+2637 q^{24}+1327 q^{23}-1766 q^{22}-4006 q^{21}-2804 q^{20}+1707 q^{19}+5681 q^{18}+4795 q^{17}-1109 q^{16}-7200 q^{15}-7358 q^{14}-202 q^{13}+8431 q^{12}+10157 q^{11}+2142 q^{10}-9044 q^9-12831 q^8-4599 q^7+8938 q^6+15092 q^5+7226 q^4-8168 q^3-16662 q^2-9688 q+6860+17481 q^{-1} +11752 q^{-2} -5299 q^{-3} -17577 q^{-4} -13272 q^{-5} +3673 q^{-6} +17126 q^{-7} +14227 q^{-8} -2146 q^{-9} -16230 q^{-10} -14734 q^{-11} +700 q^{-12} +15120 q^{-13} +14863 q^{-14} +628 q^{-15} -13722 q^{-16} -14762 q^{-17} -1986 q^{-18} +12146 q^{-19} +14447 q^{-20} +3341 q^{-21} -10288 q^{-22} -13866 q^{-23} -4733 q^{-24} +8135 q^{-25} +12989 q^{-26} +6033 q^{-27} -5764 q^{-28} -11665 q^{-29} -7050 q^{-30} +3187 q^{-31} +9899 q^{-32} +7679 q^{-33} -758 q^{-34} -7696 q^{-35} -7632 q^{-36} -1427 q^{-37} +5246 q^{-38} +6977 q^{-39} +2970 q^{-40} -2803 q^{-41} -5663 q^{-42} -3832 q^{-43} +685 q^{-44} +4017 q^{-45} +3853 q^{-46} +893 q^{-47} -2264 q^{-48} -3300 q^{-49} -1753 q^{-50} +801 q^{-51} +2302 q^{-52} +1953 q^{-53} +287 q^{-54} -1310 q^{-55} -1672 q^{-56} -786 q^{-57} +446 q^{-58} +1126 q^{-59} +915 q^{-60} +86 q^{-61} -609 q^{-62} -727 q^{-63} -322 q^{-64} +209 q^{-65} +458 q^{-66} +340 q^{-67} +19 q^{-68} -233 q^{-69} -253 q^{-70} -84 q^{-71} +80 q^{-72} +132 q^{-73} +95 q^{-74} -6 q^{-75} -71 q^{-76} -55 q^{-77} -4 q^{-78} +15 q^{-79} +24 q^{-80} +20 q^{-81} -10 q^{-82} -13 q^{-83} - q^{-84} +5 q^{-87} -3 q^{-89} + q^{-90} </math>|J6=<math>q^{84}-2 q^{83}+q^{82}-2 q^{80}+3 q^{79}+4 q^{77}-11 q^{76}+5 q^{75}+6 q^{74}-13 q^{73}+9 q^{72}+4 q^{71}+8 q^{70}-35 q^{69}+14 q^{68}+33 q^{67}-31 q^{66}+14 q^{65}+8 q^{64}-7 q^{63}-104 q^{62}+35 q^{61}+134 q^{60}+q^{59}+56 q^{58}-24 q^{57}-166 q^{56}-376 q^{55}+11 q^{54}+473 q^{53}+386 q^{52}+433 q^{51}-56 q^{50}-866 q^{49}-1518 q^{48}-590 q^{47}+1143 q^{46}+1977 q^{45}+2404 q^{44}+770 q^{43}-2440 q^{42}-5191 q^{41}-3931 q^{40}+896 q^{39}+5519 q^{38}+8774 q^{37}+5840 q^{36}-3087 q^{35}-12736 q^{34}-14275 q^{33}-5126 q^{32}+8535 q^{31}+21464 q^{30}+20913 q^{29}+3711 q^{28}-20763 q^{27}-33790 q^{26}-23968 q^{25}+2797 q^{24}+35737 q^{23}+47742 q^{22}+25842 q^{21}-19296 q^{20}-55795 q^{19}-56250 q^{18}-19856 q^{17}+39828 q^{16}+77149 q^{15}+62162 q^{14}-176 q^{13}-66747 q^{12}-90348 q^{11}-56332 q^{10}+25849 q^9+94225 q^8+98984 q^7+31972 q^6-59204 q^5-110932 q^4-91890 q^3-565 q^2+92403 q+121569+62685 q^{-1} -39334 q^{-2} -112917 q^{-3} -113494 q^{-4} -26119 q^{-5} +78166 q^{-6} +126576 q^{-7} +81477 q^{-8} -18714 q^{-9} -102975 q^{-10} -119790 q^{-11} -43052 q^{-12} +61269 q^{-13} +120653 q^{-14} +88906 q^{-15} -2616 q^{-16} -89116 q^{-17} -117304 q^{-18} -53331 q^{-19} +44956 q^{-20} +110170 q^{-21} +91149 q^{-22} +11750 q^{-23} -72997 q^{-24} -110909 q^{-25} -62305 q^{-26} +26139 q^{-27} +95418 q^{-28} +91347 q^{-29} +28507 q^{-30} -51354 q^{-31} -99432 q^{-32} -71019 q^{-33} +2037 q^{-34} +72749 q^{-35} +86347 q^{-36} +46392 q^{-37} -22402 q^{-38} -78314 q^{-39} -73965 q^{-40} -23928 q^{-41} +40923 q^{-42} +70135 q^{-43} +57488 q^{-44} +8709 q^{-45} -46453 q^{-46} -63587 q^{-47} -41731 q^{-48} +6538 q^{-49} +41592 q^{-50} +52988 q^{-51} +30341 q^{-52} -11733 q^{-53} -39075 q^{-54} -41933 q^{-55} -17472 q^{-56} +9876 q^{-57} +32877 q^{-58} +33080 q^{-59} +12006 q^{-60} -10965 q^{-61} -25847 q^{-62} -22234 q^{-63} -10742 q^{-64} +9074 q^{-65} +19913 q^{-66} +16939 q^{-67} +6488 q^{-68} -6498 q^{-69} -12371 q^{-70} -14007 q^{-71} -4760 q^{-72} +4437 q^{-73} +9148 q^{-74} +8804 q^{-75} +3734 q^{-76} -1233 q^{-77} -7148 q^{-78} -5993 q^{-79} -2838 q^{-80} +1026 q^{-81} +3675 q^{-82} +4012 q^{-83} +3001 q^{-84} -1002 q^{-85} -2170 q^{-86} -2599 q^{-87} -1575 q^{-88} -153 q^{-89} +1214 q^{-90} +2087 q^{-91} +732 q^{-92} +179 q^{-93} -683 q^{-94} -878 q^{-95} -809 q^{-96} -167 q^{-97} +595 q^{-98} +350 q^{-99} +416 q^{-100} +81 q^{-101} -106 q^{-102} -346 q^{-103} -228 q^{-104} +62 q^{-105} +12 q^{-106} +132 q^{-107} +86 q^{-108} +59 q^{-109} -71 q^{-110} -66 q^{-111} +3 q^{-112} -27 q^{-113} +15 q^{-114} +15 q^{-115} +29 q^{-116} -10 q^{-117} -13 q^{-118} +6 q^{-119} -7 q^{-120} +5 q^{-123} -3 q^{-125} + q^{-126} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 85: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 58]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[5, 14, 6, 15], X[11, 19, 12, 18], X[15, 20, 16, 1], |
X[5, 14, 6, 15], X[11, 19, 12, 18], X[15, 20, 16, 1], |
||
X[19, 16, 20, 17], X[17, 13, 18, 12], X[13, 6, 14, 7]]</nowiki></pre></td></tr> |
X[19, 16, 20, 17], X[17, 13, 18, 12], X[13, 6, 14, 7]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 58]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -10, 5, -7, 8, -9, |
|||
6, -8, 7]</nowiki></pre></td></tr> |
6, -8, 7]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 10, 2, 18, 6, 20, 12, 16]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, -2, 1, 3, -2, -4, -3, -3, 5, -4, 5}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, -2, 1, 3, -2, -4, -3, -3, 5, -4, 5}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 58]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{6, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 58]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 58]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_58_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 58]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 58]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 16 2 |
|||
27 + -- - -- - 16 t + 3 t |
27 + -- - -- - 16 t + 3 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 58]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 58]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - 4 z + 3 z</nowiki></pre></td></tr> |
1 - 4 z + 3 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 58]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{65, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 58]], KnotSignature[Knot[10, 58]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{65, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 58]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 6 8 10 11 2 3 4 |
|||
10 + q - -- + -- - -- + -- - -- - 8 q + 5 q - 2 q + q |
10 + q - -- + -- - -- + -- - -- - 8 q + 5 q - 2 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 58]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 58]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 58]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 2 -14 2 3 -4 2 4 6 |
|||
-2 + q + q - --- + q - --- + -- + q + q - 3 q + q + |
-2 + q + q - --- + q - --- + -- + q + q - 3 q + q + |
||
16 10 8 |
16 10 8 |
||
Line 92: | Line 149: | ||
8 10 12 14 |
8 10 12 14 |
||
2 q - q + q + q</nowiki></pre></td></tr> |
2 q - q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 58]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 58]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-4 2 4 6 2 2 z 2 2 4 2 4 |
|||
-2 + a + 3 a - 2 a + a - 2 z - ---- + 3 a z - 3 a z + z + |
|||
2 |
|||
a |
|||
2 4 |
|||
2 a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 58]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 4 6 4 z 3 5 2 |
|||
-2 + a - 3 a - 2 a - a - --- - 6 a z - 4 a z - 2 a z + 8 z - |
-2 + a - 3 a - 2 a - a - --- - 6 a z - 4 a z - 2 a z + 8 z - |
||
a |
a |
||
Line 122: | Line 190: | ||
2 8 4 8 9 3 9 |
2 8 4 8 9 3 9 |
||
6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 58]], Vassiliev[3][Knot[10, 58]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 58]], Vassiliev[3][Knot[10, 58]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-4, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 4 2 4 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 58]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 2 1 4 2 4 4 |
|||
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 6 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 137: | Line 207: | ||
5 3 7 3 9 4 |
5 3 7 3 9 4 |
||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 58], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 3 11 13 10 36 20 36 63 12 68 |
|||
57 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
|||
17 15 14 13 12 11 10 9 8 7 |
|||
q q q q q q q q q q |
|||
78 6 91 76 23 91 2 3 4 5 |
|||
-- + -- - -- + -- + -- - -- + 29 q - 66 q + 30 q + 20 q - 32 q + |
|||
6 5 4 3 2 q |
|||
q q q q q |
|||
6 7 8 9 10 11 12 |
|||
12 q + 7 q - 10 q + 4 q + q - 2 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:17, 29 August 2005
|
|
Visit 10 58's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 58's page at Knotilus! Visit 10 58's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X5,14,6,15 X11,19,12,18 X15,20,16,1 X19,16,20,17 X17,13,18,12 X13,6,14,7 |
Gauss code | -1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 9, -10, 5, -7, 8, -9, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 8 14 10 2 18 6 20 12 16 |
Conway Notation | [22,22,2] |
Length is 11, width is 6. Braid index is 6. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 58"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 65, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-4, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 58. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.