10 89: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 12, width is 5. |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 74: | ||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^7-5 q^6+4 q^5+17 q^4-36 q^3+q^2+76 q-86-35 q^{-1} +167 q^{-2} -119 q^{-3} -99 q^{-4} +241 q^{-5} -114 q^{-6} -155 q^{-7} +258 q^{-8} -77 q^{-9} -171 q^{-10} +207 q^{-11} -26 q^{-12} -136 q^{-13} +116 q^{-14} +7 q^{-15} -71 q^{-16} +40 q^{-17} +9 q^{-18} -21 q^{-19} +8 q^{-20} +2 q^{-21} -3 q^{-22} + q^{-23} </math>|J3=<math>-q^{15}+5 q^{14}-4 q^{13}-12 q^{12}+6 q^{11}+36 q^{10}+3 q^9-97 q^8-18 q^7+167 q^6+101 q^5-277 q^4-236 q^3+368 q^2+461 q-432-736 q^{-1} +411 q^{-2} +1062 q^{-3} -325 q^{-4} -1368 q^{-5} +159 q^{-6} +1633 q^{-7} +57 q^{-8} -1827 q^{-9} -294 q^{-10} +1939 q^{-11} +524 q^{-12} -1957 q^{-13} -741 q^{-14} +1896 q^{-15} +910 q^{-16} -1730 q^{-17} -1053 q^{-18} +1507 q^{-19} +1114 q^{-20} -1204 q^{-21} -1117 q^{-22} +885 q^{-23} +1026 q^{-24} -562 q^{-25} -881 q^{-26} +307 q^{-27} +673 q^{-28} -114 q^{-29} -467 q^{-30} +6 q^{-31} +292 q^{-32} +28 q^{-33} -153 q^{-34} -35 q^{-35} +75 q^{-36} +20 q^{-37} -31 q^{-38} -10 q^{-39} +14 q^{-40} + q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} - q^{-45} </math>|J4=<math>q^{26}-5 q^{25}+4 q^{24}+12 q^{23}-11 q^{22}-6 q^{21}-40 q^{20}+33 q^{19}+104 q^{18}-21 q^{17}-56 q^{16}-278 q^{15}+34 q^{14}+480 q^{13}+224 q^{12}-53 q^{11}-1109 q^{10}-484 q^9+1097 q^8+1336 q^7+809 q^6-2544 q^5-2490 q^4+888 q^3+3370 q^2+3825 q-3238-6045 q^{-1} -1766 q^{-2} +4781 q^{-3} +9022 q^{-4} -1392 q^{-5} -9359 q^{-6} -6894 q^{-7} +3737 q^{-8} +14355 q^{-9} +2985 q^{-10} -10439 q^{-11} -12452 q^{-12} +285 q^{-13} +17662 q^{-14} +7990 q^{-15} -9072 q^{-16} -16384 q^{-17} -3972 q^{-18} +18345 q^{-19} +11911 q^{-20} -6245 q^{-21} -18027 q^{-22} -7773 q^{-23} +16767 q^{-24} +14189 q^{-25} -2636 q^{-26} -17371 q^{-27} -10699 q^{-28} +13103 q^{-29} +14582 q^{-30} +1434 q^{-31} -14273 q^{-32} -12208 q^{-33} +7749 q^{-34} +12568 q^{-35} +4913 q^{-36} -9075 q^{-37} -11306 q^{-38} +2290 q^{-39} +8297 q^{-40} +6165 q^{-41} -3589 q^{-42} -7924 q^{-43} -1046 q^{-44} +3577 q^{-45} +4756 q^{-46} -128 q^{-47} -3859 q^{-48} -1584 q^{-49} +594 q^{-50} +2326 q^{-51} +751 q^{-52} -1186 q^{-53} -774 q^{-54} -268 q^{-55} +695 q^{-56} +419 q^{-57} -218 q^{-58} -161 q^{-59} -181 q^{-60} +130 q^{-61} +106 q^{-62} -40 q^{-63} -45 q^{-65} +20 q^{-66} +16 q^{-67} -13 q^{-68} +6 q^{-69} -6 q^{-70} +3 q^{-71} +2 q^{-72} -3 q^{-73} + q^{-74} </math>|J5=<math>-q^{40}+5 q^{39}-4 q^{38}-12 q^{37}+11 q^{36}+11 q^{35}+10 q^{34}+4 q^{33}-40 q^{32}-80 q^{31}+7 q^{30}+140 q^{29}+171 q^{28}+54 q^{27}-254 q^{26}-490 q^{25}-319 q^{24}+449 q^{23}+1152 q^{22}+895 q^{21}-429 q^{20}-2084 q^{19}-2458 q^{18}-222 q^{17}+3485 q^{16}+5070 q^{15}+2143 q^{14}-4223 q^{13}-9204 q^{12}-6649 q^{11}+3800 q^{10}+14187 q^9+14066 q^8+18 q^7-18809 q^6-25002 q^5-8346 q^4+21019 q^3+37988 q^2+22598 q-18483-51260 q^{-1} -42095 q^{-2} +9165 q^{-3} +61828 q^{-4} +65515 q^{-5} +7408 q^{-6} -67235 q^{-7} -89671 q^{-8} -30559 q^{-9} +65579 q^{-10} +111902 q^{-11} +57841 q^{-12} -56827 q^{-13} -129342 q^{-14} -86346 q^{-15} +41963 q^{-16} +140724 q^{-17} +113285 q^{-18} -23266 q^{-19} -145828 q^{-20} -136469 q^{-21} +2968 q^{-22} +145474 q^{-23} +154852 q^{-24} +17071 q^{-25} -140939 q^{-26} -168406 q^{-27} -35656 q^{-28} +133463 q^{-29} +177419 q^{-30} +52498 q^{-31} -123496 q^{-32} -182731 q^{-33} -67920 q^{-34} +111567 q^{-35} +184355 q^{-36} +82072 q^{-37} -96779 q^{-38} -182393 q^{-39} -95395 q^{-40} +79292 q^{-41} +176022 q^{-42} +106998 q^{-43} -58440 q^{-44} -164552 q^{-45} -116191 q^{-46} +35395 q^{-47} +147300 q^{-48} +121050 q^{-49} -11230 q^{-50} -124675 q^{-51} -120244 q^{-52} -11282 q^{-53} +97755 q^{-54} +112623 q^{-55} +30011 q^{-56} -69237 q^{-57} -98701 q^{-58} -42121 q^{-59} +41861 q^{-60} +79782 q^{-61} +47105 q^{-62} -18807 q^{-63} -58903 q^{-64} -44958 q^{-65} +2139 q^{-66} +38711 q^{-67} +37774 q^{-68} +7668 q^{-69} -21982 q^{-70} -28159 q^{-71} -11294 q^{-72} +10043 q^{-73} +18409 q^{-74} +10815 q^{-75} -2801 q^{-76} -10599 q^{-77} -8233 q^{-78} -497 q^{-79} +5144 q^{-80} +5264 q^{-81} +1500 q^{-82} -2082 q^{-83} -2871 q^{-84} -1305 q^{-85} +601 q^{-86} +1359 q^{-87} +827 q^{-88} -107 q^{-89} -522 q^{-90} -404 q^{-91} -67 q^{-92} +202 q^{-93} +183 q^{-94} +12 q^{-95} -49 q^{-96} -40 q^{-97} -38 q^{-98} +18 q^{-99} +32 q^{-100} -10 q^{-101} -5 q^{-102} +7 q^{-103} -7 q^{-104} - q^{-105} +6 q^{-106} -3 q^{-107} -2 q^{-108} +3 q^{-109} - q^{-110} </math>|J6=<math>q^{57}-5 q^{56}+4 q^{55}+12 q^{54}-11 q^{53}-11 q^{52}-15 q^{51}+26 q^{50}+3 q^{49}+16 q^{48}+94 q^{47}-76 q^{46}-130 q^{45}-166 q^{44}+70 q^{43}+159 q^{42}+285 q^{41}+592 q^{40}-162 q^{39}-786 q^{38}-1315 q^{37}-492 q^{36}+358 q^{35}+1823 q^{34}+3589 q^{33}+1467 q^{32}-1862 q^{31}-6117 q^{30}-5872 q^{29}-3275 q^{28}+4221 q^{27}+14196 q^{26}+13763 q^{25}+4612 q^{24}-13711 q^{23}-25068 q^{22}-27520 q^{21}-7712 q^{20}+29398 q^{19}+52006 q^{18}+47384 q^{17}+2707 q^{16}-50689 q^{15}-95331 q^{14}-79513 q^{13}+4575 q^{12}+101533 q^{11}+157541 q^{10}+110029 q^9-14670 q^8-179840 q^7-249195 q^6-151498 q^5+65923 q^4+290494 q^3+350261 q^2+197545 q-153211-449328 q^{-1} -478721 q^{-2} -188657 q^{-3} +287272 q^{-4} +629512 q^{-5} +615513 q^{-6} +130178 q^{-7} -493832 q^{-8} -853697 q^{-9} -674173 q^{-10} +85 q^{-11} +741503 q^{-12} +1085958 q^{-13} +658679 q^{-14} -241986 q^{-15} -1056845 q^{-16} -1211702 q^{-17} -533358 q^{-18} +559209 q^{-19} +1383990 q^{-20} +1234571 q^{-21} +245365 q^{-22} -976920 q^{-23} -1580502 q^{-24} -1106663 q^{-25} +159076 q^{-26} +1414442 q^{-27} +1649785 q^{-28} +766439 q^{-29} -695670 q^{-30} -1702203 q^{-31} -1533185 q^{-32} -274757 q^{-33} +1256130 q^{-34} +1843110 q^{-35} +1164970 q^{-36} -369544 q^{-37} -1649075 q^{-38} -1770803 q^{-39} -622190 q^{-40} +1033995 q^{-41} +1879600 q^{-42} +1420734 q^{-43} -80945 q^{-44} -1516518 q^{-45} -1879548 q^{-46} -885422 q^{-47} +795906 q^{-48} +1828892 q^{-49} +1591422 q^{-50} +192914 q^{-51} -1322990 q^{-52} -1907246 q^{-53} -1120225 q^{-54} +502100 q^{-55} +1683461 q^{-56} +1704725 q^{-57} +504094 q^{-58} -1014325 q^{-59} -1821200 q^{-60} -1332607 q^{-61} +107102 q^{-62} +1374897 q^{-63} +1700374 q^{-64} +832731 q^{-65} -553067 q^{-66} -1536799 q^{-67} -1430264 q^{-68} -339098 q^{-69} +873701 q^{-70} +1474204 q^{-71} +1049771 q^{-72} -20239 q^{-73} -1031393 q^{-74} -1287386 q^{-75} -669820 q^{-76} +290363 q^{-77} +1009106 q^{-78} +1008702 q^{-79} +385642 q^{-80} -441190 q^{-81} -893256 q^{-82} -724847 q^{-83} -154155 q^{-84} +461572 q^{-85} +708363 q^{-86} +503434 q^{-87} +1901 q^{-88} -419792 q^{-89} -518360 q^{-90} -309994 q^{-91} +61894 q^{-92} +330955 q^{-93} +368560 q^{-94} +169279 q^{-95} -85271 q^{-96} -237747 q^{-97} -234071 q^{-98} -89280 q^{-99} +74382 q^{-100} +167164 q^{-101} +135206 q^{-102} +38741 q^{-103} -54925 q^{-104} -101709 q^{-105} -76580 q^{-106} -16054 q^{-107} +41676 q^{-108} +55570 q^{-109} +37906 q^{-110} +5490 q^{-111} -23995 q^{-112} -30296 q^{-113} -18510 q^{-114} +1825 q^{-115} +11931 q^{-116} +13858 q^{-117} +8319 q^{-118} -1409 q^{-119} -6551 q^{-120} -6486 q^{-121} -1947 q^{-122} +633 q^{-123} +2561 q^{-124} +2778 q^{-125} +757 q^{-126} -723 q^{-127} -1264 q^{-128} -474 q^{-129} -299 q^{-130} +163 q^{-131} +538 q^{-132} +222 q^{-133} -39 q^{-134} -183 q^{-135} +6 q^{-136} -80 q^{-137} -39 q^{-138} +84 q^{-139} +29 q^{-140} -2 q^{-141} -35 q^{-142} +23 q^{-143} -5 q^{-144} -18 q^{-145} +13 q^{-146} +2 q^{-147} + q^{-148} -6 q^{-149} +3 q^{-150} +2 q^{-151} -3 q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 84: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 89]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 8, 13, 7], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[20, 13, 1, 14], X[14, 5, 15, 6], X[6, 19, 7, 20], |
X[20, 13, 1, 14], X[14, 5, 15, 6], X[6, 19, 7, 20], |
||
X[18, 16, 19, 15], X[16, 11, 17, 12], X[10, 17, 11, 18]]</nowiki></pre></td></tr> |
X[18, 16, 19, 15], X[16, 11, 17, 12], X[10, 17, 11, 18]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 89]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, |
|||
-8, 7, -5]</nowiki></pre></td></tr> |
-8, 7, -5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 12, 2, 16, 20, 18, 10, 6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, 2, 3, -2, -1, -4, -3, 2, -3, -4}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, 2, 3, -2, -1, -4, -3, 2, -3, -4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 89]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 89]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 89]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_89_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 89]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 89]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 8 24 2 3 |
|||
-33 + t - -- + -- + 24 t - 8 t + t |
-33 + t - -- + -- + 24 t - 8 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 89]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 89]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z - 2 z + z</nowiki></pre></td></tr> |
1 + z - 2 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 89]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{99, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 89]], KnotSignature[Knot[10, 89]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{99, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 89]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 7 12 15 17 16 13 2 |
|||
-9 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q |
-9 - q + -- - -- + -- - -- + -- - -- + -- + 5 q - q |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></pre></td></tr> |
q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 89]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 89]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 89]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -26 -24 2 -20 -18 4 2 2 2 2 4 |
|||
-q - q + --- - q - q + --- - --- + --- - -- + -- - -- + |
-q - q + --- - q - q + --- - --- + --- - -- + -- - -- + |
||
22 16 14 12 8 6 4 |
22 16 14 12 8 6 4 |
||
Line 94: | Line 150: | ||
2 |
2 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 89]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 89]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 2 2 4 2 6 2 4 2 4 |
|||
1 - a + 2 a - a + 2 a z - 4 a z + 3 a z - z + 2 a z - |
|||
4 4 2 6 |
|||
3 a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 89]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 3 5 7 9 2 2 |
|||
1 - a - 2 a - a - 2 a z - 4 a z - a z + a z + 3 a z + |
1 - a - 2 a - a - 2 a z - 4 a z - a z + a z + 3 a z + |
||
Line 114: | Line 178: | ||
5 7 7 7 2 8 4 8 6 8 3 9 5 9 |
5 7 7 7 2 8 4 8 6 8 3 9 5 9 |
||
11 a z + 5 a z + 7 a z + 12 a z + 5 a z + 2 a z + 2 a z</nowiki></pre></td></tr> |
11 a z + 5 a z + 7 a z + 12 a z + 5 a z + 2 a z + 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 89]], Vassiliev[3][Knot[10, 89]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 89]], Vassiliev[3][Knot[10, 89]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 8 1 2 1 5 2 7 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 89]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 8 1 2 1 5 2 7 5 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 129: | Line 195: | ||
3 2 5 3 |
3 2 5 3 |
||
4 q t + q t</nowiki></pre></td></tr> |
4 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 89], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 2 8 21 9 40 71 7 116 |
|||
-86 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
|||
22 21 20 19 18 17 16 15 14 |
|||
q q q q q q q q q |
|||
136 26 207 171 77 258 155 114 241 99 119 167 |
|||
--- - --- + --- - --- - -- + --- - --- - --- + --- - -- - --- + --- - |
|||
13 12 11 10 9 8 7 6 5 4 3 2 |
|||
q q q q q q q q q q q q |
|||
35 2 3 4 5 6 7 |
|||
-- + 76 q + q - 36 q + 17 q + 4 q - 5 q + q |
|||
q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:21, 29 August 2005
|
|
Visit 10 89's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 89's page at Knotilus! Visit 10 89's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X12,8,13,7 X8394 X2,9,3,10 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,16,19,15 X16,11,17,12 X10,17,11,18 |
Gauss code | 1, -4, 3, -1, 6, -7, 2, -3, 4, -10, 9, -2, 5, -6, 8, -9, 10, -8, 7, -5 |
Dowker-Thistlethwaite code | 4 8 14 12 2 16 20 18 10 6 |
Conway Notation | [.21.210] |
Length is 12, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 89"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 99, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 89. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.