10 151: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n54]], [[K11n129]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 71: | ||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{18}+q^{17}-7 q^{16}+6 q^{15}+10 q^{14}-26 q^{13}+10 q^{12}+31 q^{11}-47 q^{10}+6 q^9+51 q^8-55 q^7-2 q^6+57 q^5-46 q^4-12 q^3+49 q^2-27 q-17+30 q^{-1} -8 q^{-2} -12 q^{-3} +10 q^{-4} -3 q^{-6} + q^{-7} </math>|J3=<math>-2 q^{35}+2 q^{34}+2 q^{33}+5 q^{32}-15 q^{31}-6 q^{30}+22 q^{29}+27 q^{28}-38 q^{27}-56 q^{26}+47 q^{25}+99 q^{24}-49 q^{23}-147 q^{22}+36 q^{21}+195 q^{20}-13 q^{19}-238 q^{18}-9 q^{17}+257 q^{16}+46 q^{15}-277 q^{14}-65 q^{13}+265 q^{12}+98 q^{11}-258 q^{10}-110 q^9+223 q^8+135 q^7-191 q^6-141 q^5+142 q^4+150 q^3-99 q^2-137 q+49+120 q^{-1} -13 q^{-2} -92 q^{-3} -10 q^{-4} +60 q^{-5} +20 q^{-6} -32 q^{-7} -20 q^{-8} +15 q^{-9} +12 q^{-10} -5 q^{-11} -5 q^{-12} +3 q^{-14} - q^{-15} </math>|J4=<math>q^{58}+q^{57}-3 q^{56}-6 q^{55}+4 q^{54}+7 q^{53}+17 q^{52}-7 q^{51}-51 q^{50}-9 q^{49}+27 q^{48}+107 q^{47}+37 q^{46}-168 q^{45}-131 q^{44}-18 q^{43}+315 q^{42}+271 q^{41}-260 q^{40}-414 q^{39}-290 q^{38}+515 q^{37}+725 q^{36}-142 q^{35}-700 q^{34}-794 q^{33}+519 q^{32}+1196 q^{31}+179 q^{30}-795 q^{29}-1295 q^{28}+328 q^{27}+1457 q^{26}+514 q^{25}-685 q^{24}-1592 q^{23}+79 q^{22}+1475 q^{21}+735 q^{20}-473 q^{19}-1657 q^{18}-148 q^{17}+1305 q^{16}+848 q^{15}-195 q^{14}-1540 q^{13}-368 q^{12}+978 q^{11}+873 q^{10}+140 q^9-1245 q^8-553 q^7+519 q^6+756 q^5+449 q^4-784 q^3-583 q^2+62 q+461+558 q^{-1} -294 q^{-2} -394 q^{-3} -191 q^{-4} +121 q^{-5} +409 q^{-6} -130 q^{-8} -175 q^{-9} -60 q^{-10} +171 q^{-11} +52 q^{-12} +11 q^{-13} -64 q^{-14} -61 q^{-15} +38 q^{-16} +15 q^{-17} +20 q^{-18} -8 q^{-19} -19 q^{-20} +5 q^{-21} +5 q^{-23} -3 q^{-25} + q^{-26} </math>|J5=<math>-2 q^{86}+2 q^{85}+4 q^{83}+5 q^{82}-7 q^{81}-22 q^{80}-q^{79}+10 q^{78}+34 q^{77}+60 q^{76}-18 q^{75}-115 q^{74}-113 q^{73}-24 q^{72}+158 q^{71}+325 q^{70}+168 q^{69}-262 q^{68}-572 q^{67}-473 q^{66}+175 q^{65}+958 q^{64}+1030 q^{63}+70 q^{62}-1290 q^{61}-1796 q^{60}-678 q^{59}+1477 q^{58}+2730 q^{57}+1616 q^{56}-1360 q^{55}-3665 q^{54}-2850 q^{53}+886 q^{52}+4421 q^{51}+4240 q^{50}-67 q^{49}-4887 q^{48}-5597 q^{47}-990 q^{46}+5020 q^{45}+6757 q^{44}+2119 q^{43}-4843 q^{42}-7587 q^{41}-3238 q^{40}+4461 q^{39}+8157 q^{38}+4098 q^{37}-3939 q^{36}-8344 q^{35}-4864 q^{34}+3383 q^{33}+8418 q^{32}+5307 q^{31}-2827 q^{30}-8185 q^{29}-5723 q^{28}+2252 q^{27}+7951 q^{26}+5910 q^{25}-1656 q^{24}-7456 q^{23}-6134 q^{22}+971 q^{21}+6930 q^{20}+6187 q^{19}-209 q^{18}-6116 q^{17}-6228 q^{16}-640 q^{15}+5202 q^{14}+6016 q^{13}+1502 q^{12}-4009 q^{11}-5657 q^{10}-2276 q^9+2758 q^8+4966 q^7+2820 q^6-1410 q^5-4063 q^4-3078 q^3+267 q^2+2944 q+2942+649 q^{-1} -1809 q^{-2} -2498 q^{-3} -1166 q^{-4} +806 q^{-5} +1834 q^{-6} +1306 q^{-7} -79 q^{-8} -1114 q^{-9} -1148 q^{-10} -340 q^{-11} +528 q^{-12} +819 q^{-13} +458 q^{-14} -126 q^{-15} -464 q^{-16} -406 q^{-17} -76 q^{-18} +212 q^{-19} +268 q^{-20} +116 q^{-21} -54 q^{-22} -132 q^{-23} -106 q^{-24} -6 q^{-25} +62 q^{-26} +56 q^{-27} +12 q^{-28} -12 q^{-29} -24 q^{-30} -20 q^{-31} +8 q^{-32} +12 q^{-33} +2 q^{-34} -5 q^{-37} +3 q^{-39} - q^{-40} </math>|J6=<math>q^{120}+q^{119}-3 q^{118}-2 q^{117}-2 q^{116}+q^{115}+2 q^{114}+13 q^{113}+21 q^{112}-8 q^{111}-41 q^{110}-48 q^{109}-17 q^{108}+6 q^{107}+113 q^{106}+183 q^{105}+92 q^{104}-146 q^{103}-357 q^{102}-341 q^{101}-243 q^{100}+327 q^{99}+915 q^{98}+970 q^{97}+231 q^{96}-928 q^{95}-1710 q^{94}-2000 q^{93}-429 q^{92}+2055 q^{91}+3803 q^{90}+3118 q^{89}+94 q^{88}-3635 q^{87}-6799 q^{86}-5086 q^{85}+735 q^{84}+7577 q^{83}+10229 q^{82}+6481 q^{81}-2214 q^{80}-12818 q^{79}-15176 q^{78}-7357 q^{77}+7382 q^{76}+18698 q^{75}+19187 q^{74}+6932 q^{73}-14315 q^{72}-26637 q^{71}-22143 q^{70}-864 q^{69}+22214 q^{68}+32959 q^{67}+22463 q^{66}-7769 q^{65}-32841 q^{64}-37349 q^{63}-14781 q^{62}+17946 q^{61}+41183 q^{60}+37568 q^{59}+3743 q^{58}-31588 q^{57}-46734 q^{56}-27737 q^{55}+9250 q^{54}+42256 q^{53}+46837 q^{52}+14301 q^{51}-26107 q^{50}-49357 q^{49}-35575 q^{48}+1077 q^{47}+39177 q^{46}+50048 q^{45}+20995 q^{44}-20269 q^{43}-47977 q^{42}-38806 q^{41}-4769 q^{40}+34917 q^{39}+49793 q^{38}+24848 q^{37}-14993 q^{36}-44855 q^{35}-39861 q^{34}-9656 q^{33}+29765 q^{32}+47813 q^{31}+28065 q^{30}-8734 q^{29}-39836 q^{28}-39980 q^{27}-15505 q^{26}+22101 q^{25}+43550 q^{24}+31297 q^{23}+47 q^{22}-31223 q^{21}-37992 q^{20}-22209 q^{19}+10784 q^{18}+35021 q^{17}+32471 q^{16}+10341 q^{15}-18165 q^{14}-31284 q^{13}-26575 q^{12}-2302 q^{11}+21452 q^{10}+28161 q^9+17824 q^8-3343 q^7-19019 q^6-24437 q^5-11863 q^4+6209 q^3+17586 q^2+17892 q+7230-5189 q^{-1} -15429 q^{-2} -13277 q^{-3} -4234 q^{-4} +5443 q^{-5} +10909 q^{-6} +9321 q^{-7} +3615 q^{-8} -5026 q^{-9} -7871 q^{-10} -6366 q^{-11} -1807 q^{-12} +2900 q^{-13} +5254 q^{-14} +4911 q^{-15} +740 q^{-16} -1901 q^{-17} -3355 q^{-18} -2721 q^{-19} -952 q^{-20} +1066 q^{-21} +2402 q^{-22} +1415 q^{-23} +571 q^{-24} -589 q^{-25} -1072 q^{-26} -1070 q^{-27} -375 q^{-28} +490 q^{-29} +457 q^{-30} +526 q^{-31} +183 q^{-32} -73 q^{-33} -351 q^{-34} -274 q^{-35} + q^{-36} +3 q^{-37} +131 q^{-38} +102 q^{-39} +72 q^{-40} -56 q^{-41} -65 q^{-42} -7 q^{-43} -29 q^{-44} +12 q^{-45} +15 q^{-46} +29 q^{-47} -8 q^{-48} -12 q^{-49} +5 q^{-50} -7 q^{-51} +5 q^{-54} -3 q^{-56} + q^{-57} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 81: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 151]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[9, 17, 10, 16], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[9, 17, 10, 16], |
|||
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14], |
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14], |
||
X[15, 11, 16, 10], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[15, 11, 16, 10], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 151]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, |
|||
6, -7, 5]</nowiki></pre></td></tr> |
6, -7, 5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, 16, -6, 18, 10, 20, 14]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, -1, 3, -2, 1, 3, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, 2, -1, -1, 3, -2, 1, 3, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 151]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 151]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 151]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_151_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 151]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 151]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 10 2 3 |
|||
-13 + t - -- + -- + 10 t - 4 t + t |
-13 + t - -- + -- + 10 t - 4 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 151]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 151]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z + 2 z + z</nowiki></pre></td></tr> |
1 + 3 z + 2 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 151], Knot[11, NonAlternating, 54], |
|||
Knot[11, NonAlternating, 129]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 129]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 151]], KnotSignature[Knot[10, 151]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 151]], KnotSignature[Knot[10, 151]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{43, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 151]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 |
|||
-5 - q + - + 7 q - 7 q + 8 q - 6 q + 4 q - 2 q |
-5 - q + - + 7 q - 7 q + 8 q - 6 q + 4 q - 2 q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 151]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 151]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 151]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 10 12 14 16 18 |
|||
-q + q - q + 2 q - q + 3 q + 2 q + q - q + q - 2 q - |
-q + q - q + 2 q - q + 3 q + 2 q + q - q + q - 2 q - |
||
20 |
20 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 151]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 151]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6 |
|||
-6 3 2 z 6 z 4 z 4 z z |
|||
-1 - a + -- - 2 z - -- + ---- - z - -- + ---- + -- |
|||
2 4 2 4 2 2 |
|||
a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 151]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-6 3 3 z 3 z z 2 z 2 2 z 4 z |
-6 3 3 z 3 z z 2 z 2 2 z 4 z |
||
-1 + a - -- - --- - --- + -- + --- + a z + 4 z - ---- + ---- + |
-1 + a - -- - --- - --- + -- + --- + a z + 4 z - ---- + ---- + |
||
Line 113: | Line 176: | ||
3 a 4 2 |
3 a 4 2 |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 151]], Vassiliev[3][Knot[10, 151]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 151]], Vassiliev[3][Knot[10, 151]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 3 2 q 3 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 151]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 3 2 q 3 5 |
|||
4 q + 4 q + ----- + ----- + ---- + --- + --- + 4 q t + 3 q t + |
4 q + 4 q + ----- + ----- + ---- + --- + --- + 4 q t + 3 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 123: | Line 188: | ||
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
||
4 q t + 4 q t + 2 q t + 4 q t + 2 q t + 2 q t + 2 q t</nowiki></pre></td></tr> |
4 q t + 4 q t + 2 q t + 4 q t + 2 q t + 2 q t + 2 q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 151], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 10 12 8 30 2 3 4 |
|||
-17 + q - -- + -- - -- - -- + -- - 27 q + 49 q - 12 q - 46 q + |
|||
6 4 3 2 q |
|||
q q q q |
|||
5 6 7 8 9 10 11 12 |
|||
57 q - 2 q - 55 q + 51 q + 6 q - 47 q + 31 q + 10 q - |
|||
13 14 15 16 17 18 |
|||
26 q + 10 q + 6 q - 7 q + q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:26, 29 August 2005
|
|
Visit 10 151's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 151's page at Knotilus! Visit 10 151's page at the original Knot Atlas! |
10 151 Further Notes and Views
Knot presentations
Planar diagram presentation | X1425 X3849 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X7283 |
Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 -12 2 16 -6 18 10 20 14 |
Conway Notation | [(21,2)(21,2-)] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 151"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 43, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n54, K11n129, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 151. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.