10 127: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
| Line 197: | Line 198: | ||
</table> |
</table> |
||
{| width=100% |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
||
Revision as of 20:03, 29 August 2005
|
|
|
|
Visit 10 127's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 127's page at Knotilus! Visit 10 127's page at the original Knot Atlas! |
10 127 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X6,14,7,13 X7283 |
| Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4 |
| Dowker-Thistlethwaite code | 4 8 -14 2 16 18 -6 20 10 12 |
| Conway Notation | [41,21,2-] |
|
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 5 | |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 127"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_150, K11n51, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 127. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} +2 q^{-4} -4 q^{-5} + q^{-6} +8 q^{-7} -9 q^{-8} -4 q^{-9} +17 q^{-10} -12 q^{-11} -11 q^{-12} +25 q^{-13} -12 q^{-14} -17 q^{-15} +28 q^{-16} -9 q^{-17} -17 q^{-18} +22 q^{-19} -4 q^{-20} -12 q^{-21} +11 q^{-22} -6 q^{-24} +4 q^{-25} -2 q^{-27} + q^{-28} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-4} -6 q^{-7} +4 q^{-8} +7 q^{-9} +3 q^{-10} -16 q^{-11} -4 q^{-12} +14 q^{-13} +19 q^{-14} -22 q^{-15} -23 q^{-16} +12 q^{-17} +40 q^{-18} -12 q^{-19} -45 q^{-20} +56 q^{-22} +6 q^{-23} -61 q^{-24} -14 q^{-25} +65 q^{-26} +22 q^{-27} -68 q^{-28} -26 q^{-29} +65 q^{-30} +32 q^{-31} -62 q^{-32} -31 q^{-33} +49 q^{-34} +36 q^{-35} -42 q^{-36} -29 q^{-37} +25 q^{-38} +27 q^{-39} -16 q^{-40} -19 q^{-41} +7 q^{-42} +13 q^{-43} -3 q^{-44} -8 q^{-45} +2 q^{-46} +4 q^{-47} - q^{-48} -3 q^{-49} +2 q^{-50} + q^{-51} -2 q^{-53} + q^{-54} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} +2 q^{-5} -4 q^{-7} -2 q^{-8} -3 q^{-9} +9 q^{-10} +12 q^{-11} -5 q^{-12} -8 q^{-13} -25 q^{-14} +6 q^{-15} +33 q^{-16} +11 q^{-17} +8 q^{-18} -57 q^{-19} -27 q^{-20} +32 q^{-21} +34 q^{-22} +63 q^{-23} -62 q^{-24} -69 q^{-25} -13 q^{-26} +26 q^{-27} +138 q^{-28} -24 q^{-29} -85 q^{-30} -80 q^{-31} -24 q^{-32} +196 q^{-33} +35 q^{-34} -68 q^{-35} -136 q^{-36} -89 q^{-37} +229 q^{-38} +84 q^{-39} -41 q^{-40} -170 q^{-41} -140 q^{-42} +242 q^{-43} +115 q^{-44} -15 q^{-45} -187 q^{-46} -172 q^{-47} +234 q^{-48} +131 q^{-49} +13 q^{-50} -176 q^{-51} -189 q^{-52} +187 q^{-53} +125 q^{-54} +51 q^{-55} -128 q^{-56} -181 q^{-57} +109 q^{-58} +85 q^{-59} +75 q^{-60} -54 q^{-61} -133 q^{-62} +38 q^{-63} +25 q^{-64} +64 q^{-65} + q^{-66} -68 q^{-67} +11 q^{-68} -14 q^{-69} +31 q^{-70} +14 q^{-71} -24 q^{-72} +11 q^{-73} -17 q^{-74} +8 q^{-75} +6 q^{-76} -9 q^{-77} +11 q^{-78} -7 q^{-79} + q^{-80} + q^{-81} -5 q^{-82} +5 q^{-83} - q^{-84} + q^{-85} -2 q^{-87} + q^{-88} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-4} +2 q^{-6} -2 q^{-7} -6 q^{-8} -6 q^{-9} +6 q^{-10} +4 q^{-11} +15 q^{-12} +12 q^{-13} -14 q^{-14} -28 q^{-15} -15 q^{-16} -8 q^{-17} +30 q^{-18} +56 q^{-19} +23 q^{-20} -34 q^{-21} -52 q^{-22} -70 q^{-23} -11 q^{-24} +79 q^{-25} +97 q^{-26} +45 q^{-27} -26 q^{-28} -125 q^{-29} -125 q^{-30} -5 q^{-31} +102 q^{-32} +158 q^{-33} +124 q^{-34} -64 q^{-35} -206 q^{-36} -183 q^{-37} -43 q^{-38} +178 q^{-39} +304 q^{-40} +146 q^{-41} -152 q^{-42} -335 q^{-43} -284 q^{-44} +51 q^{-45} +400 q^{-46} +399 q^{-47} +31 q^{-48} -389 q^{-49} -509 q^{-50} -149 q^{-51} +393 q^{-52} +594 q^{-53} +237 q^{-54} -365 q^{-55} -660 q^{-56} -321 q^{-57} +344 q^{-58} +707 q^{-59} +388 q^{-60} -326 q^{-61} -741 q^{-62} -433 q^{-63} +301 q^{-64} +767 q^{-65} +478 q^{-66} -289 q^{-67} -775 q^{-68} -511 q^{-69} +251 q^{-70} +779 q^{-71} +549 q^{-72} -217 q^{-73} -750 q^{-74} -570 q^{-75} +131 q^{-76} +709 q^{-77} +598 q^{-78} -70 q^{-79} -611 q^{-80} -579 q^{-81} -47 q^{-82} +502 q^{-83} +557 q^{-84} +107 q^{-85} -353 q^{-86} -469 q^{-87} -188 q^{-88} +218 q^{-89} +377 q^{-90} +201 q^{-91} -93 q^{-92} -258 q^{-93} -195 q^{-94} +6 q^{-95} +157 q^{-96} +152 q^{-97} +42 q^{-98} -73 q^{-99} -105 q^{-100} -54 q^{-101} +19 q^{-102} +59 q^{-103} +47 q^{-104} +8 q^{-105} -25 q^{-106} -33 q^{-107} -16 q^{-108} +9 q^{-109} +13 q^{-110} +14 q^{-111} +7 q^{-112} -9 q^{-113} -10 q^{-114} - q^{-115} -3 q^{-116} +2 q^{-117} +9 q^{-118} + q^{-119} -4 q^{-120} + q^{-121} -3 q^{-122} -3 q^{-123} +3 q^{-124} +2 q^{-125} - q^{-126} + q^{-127} -2 q^{-129} + q^{-130} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} +2 q^{-4} -2 q^{-7} -4 q^{-8} -8 q^{-9} -3 q^{-10} +9 q^{-11} +16 q^{-12} +13 q^{-13} +8 q^{-14} - q^{-15} -37 q^{-16} -41 q^{-17} -22 q^{-18} +21 q^{-19} +44 q^{-20} +62 q^{-21} +73 q^{-22} -19 q^{-23} -83 q^{-24} -122 q^{-25} -66 q^{-26} -20 q^{-27} +79 q^{-28} +207 q^{-29} +133 q^{-30} +30 q^{-31} -140 q^{-32} -168 q^{-33} -237 q^{-34} -128 q^{-35} +165 q^{-36} +258 q^{-37} +298 q^{-38} +117 q^{-39} +14 q^{-40} -348 q^{-41} -470 q^{-42} -225 q^{-43} +16 q^{-44} +368 q^{-45} +475 q^{-46} +590 q^{-47} -9 q^{-48} -527 q^{-49} -691 q^{-50} -629 q^{-51} -86 q^{-52} +489 q^{-53} +1213 q^{-54} +738 q^{-55} -28 q^{-56} -788 q^{-57} -1288 q^{-58} -950 q^{-59} -38 q^{-60} +1470 q^{-61} +1492 q^{-62} +844 q^{-63} -395 q^{-64} -1602 q^{-65} -1819 q^{-66} -878 q^{-67} +1303 q^{-68} +1954 q^{-69} +1696 q^{-70} +234 q^{-71} -1564 q^{-72} -2423 q^{-73} -1661 q^{-74} +952 q^{-75} +2121 q^{-76} +2292 q^{-77} +783 q^{-78} -1381 q^{-79} -2751 q^{-80} -2189 q^{-81} +659 q^{-82} +2147 q^{-83} +2629 q^{-84} +1119 q^{-85} -1231 q^{-86} -2915 q^{-87} -2479 q^{-88} +484 q^{-89} +2145 q^{-90} +2817 q^{-91} +1314 q^{-92} -1121 q^{-93} -3001 q^{-94} -2667 q^{-95} +308 q^{-96} +2095 q^{-97} +2937 q^{-98} +1528 q^{-99} -905 q^{-100} -2958 q^{-101} -2827 q^{-102} -46 q^{-103} +1822 q^{-104} +2907 q^{-105} +1814 q^{-106} -411 q^{-107} -2582 q^{-108} -2826 q^{-109} -580 q^{-110} +1161 q^{-111} +2490 q^{-112} +1970 q^{-113} +297 q^{-114} -1740 q^{-115} -2399 q^{-116} -1001 q^{-117} +269 q^{-118} +1601 q^{-119} +1699 q^{-120} +834 q^{-121} -702 q^{-122} -1524 q^{-123} -971 q^{-124} -381 q^{-125} +604 q^{-126} +1022 q^{-127} +867 q^{-128} +9 q^{-129} -620 q^{-130} -544 q^{-131} -504 q^{-132} -11 q^{-133} +358 q^{-134} +529 q^{-135} +196 q^{-136} -107 q^{-137} -125 q^{-138} -298 q^{-139} -157 q^{-140} +22 q^{-141} +204 q^{-142} +110 q^{-143} +26 q^{-144} +53 q^{-145} -104 q^{-146} -95 q^{-147} -48 q^{-148} +55 q^{-149} +23 q^{-150} +12 q^{-151} +67 q^{-152} -21 q^{-153} -32 q^{-154} -33 q^{-155} +14 q^{-156} -5 q^{-157} -7 q^{-158} +39 q^{-159} -4 q^{-161} -15 q^{-162} +5 q^{-163} -7 q^{-164} -11 q^{-165} +17 q^{-166} +2 q^{-167} +3 q^{-168} -5 q^{-169} +3 q^{-170} -3 q^{-171} -7 q^{-172} +5 q^{-173} +2 q^{-175} - q^{-176} + q^{-177} -2 q^{-179} + q^{-180} } |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| See/edit the Rolfsen_Splice_Template.
Back to the top. |
|



