In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[6, 3]] |
Out[2]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 9, 1, 10], X[10, 5, 11, 6],
X[6, 11, 7, 12], X[2, 8, 3, 7]] |
In[3]:= | GaussCode[Knot[6, 3]] |
Out[3]= | GaussCode[1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3] |
In[4]:= | DTCode[Knot[6, 3]] |
Out[4]= | DTCode[4, 8, 10, 2, 12, 6] |
In[5]:= | br = BR[Knot[6, 3]] |
Out[5]= | BR[3, {-1, -1, 2, -1, 2, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 6} |
In[7]:= | BraidIndex[Knot[6, 3]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[6, 3]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[6, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 1, 2, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[6, 3]][t] |
Out[10]= | -2 3 2
5 + t - - - 3 t + t
t |
In[11]:= | Conway[Knot[6, 3]][z] |
Out[11]= | 2 4
1 + z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[6, 3], Knot[11, NonAlternating, 12]} |
In[13]:= | {KnotDet[Knot[6, 3]], KnotSignature[Knot[6, 3]]} |
Out[13]= | {13, 0} |
In[14]:= | Jones[Knot[6, 3]][q] |
Out[14]= | -3 2 2 2 3
3 - q + -- - - - 2 q + 2 q - q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[6, 3]} |
In[16]:= | A2Invariant[Knot[6, 3]][q] |
Out[16]= | -10 2 2 10
1 - q + -- + 2 q - q
2
q |
In[17]:= | HOMFLYPT[Knot[6, 3]][a, z] |
Out[17]= | 2
-2 2 2 z 2 2 4
3 - a - a + 3 z - -- - a z + z
2
a |
In[18]:= | Kauffman[Knot[6, 3]][a, z] |
Out[18]= | 2 3
-2 2 z 2 z 3 2 3 z 2 2 z
3 + a + a - -- - --- - 2 a z - a z - 6 z - ---- - 3 a z + -- +
3 a 2 3
a a a
3 4 5
z 3 3 3 4 2 z 2 4 z 5
-- + a z + a z + 4 z + ---- + 2 a z + -- + a z
a 2 a
a |
In[19]:= | {Vassiliev[2][Knot[6, 3]], Vassiliev[3][Knot[6, 3]]} |
Out[19]= | {1, 0} |
In[20]:= | Kh[Knot[6, 3]][q, t] |
Out[20]= | 2 1 1 1 1 1 3 3 2
- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t + q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
5 2 7 3
q t + q t |
In[21]:= | ColouredJones[Knot[6, 3], 2][q] |
Out[21]= | -9 2 -7 5 4 3 9 5 5 2 3
11 + q - -- - q + -- - -- - -- + -- - -- - - - 5 q - 5 q + 9 q -
8 6 5 4 3 2 q
q q q q q q
4 5 6 7 8 9
3 q - 4 q + 5 q - q - 2 q + q |