In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 83]] |
Out[2]= | PD[X[1, 6, 2, 7], X[5, 16, 6, 17], X[13, 1, 14, 20], X[7, 15, 8, 14],
X[3, 9, 4, 8], X[9, 5, 10, 4], X[19, 11, 20, 10], X[11, 19, 12, 18],
X[17, 13, 18, 12], X[15, 2, 16, 3]] |
In[3]:= | GaussCode[Knot[10, 83]] |
Out[3]= | GaussCode[-1, 10, -5, 6, -2, 1, -4, 5, -6, 7, -8, 9, -3, 4, -10, 2, -9,
8, -7, 3] |
In[4]:= | DTCode[Knot[10, 83]] |
Out[4]= | DTCode[6, 8, 16, 14, 4, 18, 20, 2, 12, 10] |
In[5]:= | br = BR[Knot[10, 83]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, -3, 2, 2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 83]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 83]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 83]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 83]][t] |
Out[10]= | 2 9 19 2 3
-23 + -- - -- + -- + 19 t - 9 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 83]][z] |
Out[11]= | 2 4 6
1 + z + 3 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 83], Knot[11, Alternating, 307], Knot[11, Alternating, 323]} |
In[13]:= | {KnotDet[Knot[10, 83]], KnotSignature[Knot[10, 83]]} |
Out[13]= | {83, 2} |
In[14]:= | Jones[Knot[10, 83]][q] |
Out[14]= | -2 4 2 3 4 5 6 7 8
-7 - q + - + 11 q - 13 q + 14 q - 13 q + 10 q - 6 q + 3 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 73], Knot[10, 83]} |
In[16]:= | A2Invariant[Knot[10, 83]][q] |
Out[16]= | -6 2 2 4 6 8 12 14 16 18
-q + -- + 3 q - 3 q + 2 q - q + 2 q - 2 q + 3 q - q -
4
q
20 22 24
q + q - q |
In[17]:= | HOMFLYPT[Knot[10, 83]][a, z] |
Out[17]= | 2 2 4 4 4 6 6
-6 2 -2 2 2 z 4 z 4 z 3 z 2 z z z
1 - a + -- - a - z - ---- + ---- - z - -- + ---- + ---- + -- + --
4 6 4 6 4 2 4 2
a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 83]][a, z] |
Out[18]= | 2 2 2
-6 2 -2 3 z 6 z 4 z z 2 2 z 4 z 10 z
1 + a + -- + a - --- - --- - --- - - + 2 z + ---- - ---- - ----- -
4 7 5 3 a 8 6 4
a a a a a a a
2 3 3 3 3 3 4
2 z 2 z 9 z 20 z 13 z 3 z 3 4 6 z
---- - ---- + ---- + ----- + ----- + ---- - a z - 7 z - ---- +
2 9 7 5 3 a 8
a a a a a a
4 4 4 5 5 5 5 5
10 z 22 z z z 11 z 18 z 17 z 10 z 5
----- + ----- - -- + -- - ----- - ----- - ----- - ----- + a z +
6 4 2 9 7 5 3 a
a a a a a a a
6 6 6 6 7 7 7 7
6 3 z 10 z 22 z 5 z 5 z 5 z 6 z 6 z
4 z + ---- - ----- - ----- - ---- + ---- + ---- + ---- + ---- +
8 6 4 2 7 5 3 a
a a a a a a a
8 8 8 9 9
5 z 10 z 5 z 2 z 2 z
---- + ----- + ---- + ---- + ----
6 4 2 5 3
a a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 83]], Vassiliev[3][Knot[10, 83]]} |
Out[19]= | {1, 2} |
In[20]:= | Kh[Knot[10, 83]][q, t] |
Out[20]= | 3 1 3 1 4 3 q 3 5
7 q + 5 q + ----- + ----- + ---- + --- + --- + 7 q t + 6 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
7 q t + 7 q t + 6 q t + 7 q t + 4 q t + 6 q t +
11 5 13 5 13 6 15 6 17 7
2 q t + 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 83], 2][q] |
Out[21]= | -7 4 2 12 23 -2 48 2 3
-56 + q - -- + -- + -- - -- + q + -- - 19 q + 107 q - 82 q -
6 5 4 3 q
q q q q
4 5 6 7 8 9 10 11
59 q + 159 q - 83 q - 97 q + 175 q - 61 q - 110 q + 145 q -
12 13 14 15 16 17 18 19
26 q - 91 q + 85 q + q - 52 q + 32 q + 7 q - 18 q +
20 21 22 23
7 q + 2 q - 3 q + q |