T(5,2): Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--  -->  | 
  <!--  -->  | 
||
<!-- This knot page was produced from [[Torus Knots Splice Template]] -->  | 
|||
<!--  -->  | 
  <!--  -->  | 
||
<!-- -->  | 
|||
<span id="top"></span>  | 
  <span id="top"></span>  | 
||
<!-- -->  | 
|||
{{Knot Navigation Links|ext=jpg}}  | 
  {{Knot Navigation Links|ext=jpg}}  | 
||
| ⚫ | |||
{| align=left  | 
  |||
|- valign=top  | 
  |||
|[[Image:{{PAGENAME}}.jpg]]  | 
  |||
| ⚫ | |||
{{:{{PAGENAME}} Quick Notes}}  | 
  |||
|}  | 
  |||
<br style="clear:both" />  | 
  <br style="clear:both" />  | 
||
| Line 23: | Line 17: | ||
{{Vassiliev Invariants}}  | 
  {{Vassiliev Invariants}}  | 
||
{{Khovanov Homology|table=<table border=1>  | 
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.  | 
  |||
<center><table border=1>  | 
  |||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=20.%><table cellpadding=0 cellspacing=0>  | 
  <td width=20.%><table cellpadding=0 cellspacing=0>  | 
||
| Line 42: | Line 32: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
</table>  | 
  </table>}}  | 
||
{{Computer Talk Header}}  | 
  {{Computer Talk Header}}  | 
||
| Line 63: | Line 53: | ||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1}]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 2]][t]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 2]][t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -2   1        2  | 
  <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>               -2        1                                 2  | 
||
1 +   | 
  1 + Alternating   - ----------- - Alternating + Alternating  | 
||
                    Alternating</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 2]][z]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 2]][z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2    4  | 
  <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2    4  | 
||
| Line 91: | Line 81: | ||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 5}</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 5}</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 2]][q, t]</nowiki></pre></td></tr>  | 
  <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 2]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3    5      | 
  <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3    5              2  7              3  11              4  11  | 
||
q  + q  +   | 
  q  + q  + Alternating  q  + Alternating  q   + Alternating  q   +   | 
||
             5  15  | 
|||
  Alternating  q</nowiki></pre></td></tr>  | 
|||
</table>  | 
  </table>  | 
||
 [[Category:Knot Page]]  | 
|||
Revision as of 19:44, 28 August 2005
| 
 | 
 | 
 
 | 
Visit [[[:Template:KnotilusURL]] T(5,2)'s page] at Knotilus!
 Visit T(5,2)'s page at the original Knot Atlas!  | 
| An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]),
 as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1  | 
   The VISA Interlink Logo [1]  | 
   Version of the US bicentennial emblem  | |
   A pentagonal table by Bob Mackay [2]  | 
||
   Partial view of US bicentennial logo on a shirt seen in Lisboa [3]  | ||
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
| Planar diagram presentation | X3948 X9,5,10,4 X5,1,6,10 X1726 X7382 | 
| Gauss code | -4, 5, -1, 2, -3, 4, -5, 1, -2, 3 | 
| Dowker-Thistlethwaite code | 6 8 10 2 4 | 
| Conway Notation | Data:T(5,2)/Conway Notation | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["T(5,2)"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 5, 4 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
Vassiliev invariants
| V2 and V3: | (3, 5) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of T(5,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
In[1]:=  | 
<< KnotTheory`  | 
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...  | |
In[2]:=  | Crossings[TorusKnot[5, 2]]  | 
Out[2]=  | 5  | 
In[3]:=  | PD[TorusKnot[5, 2]]  | 
Out[3]=  | PD[X[3, 9, 4, 8], X[9, 5, 10, 4], X[5, 1, 6, 10], X[1, 7, 2, 6], X[7, 3, 8, 2]]  | 
In[4]:=  | GaussCode[TorusKnot[5, 2]]  | 
Out[4]=  | GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3]  | 
In[5]:=  | BR[TorusKnot[5, 2]]  | 
Out[5]=  | BR[2, {1, 1, 1, 1, 1}] | 
In[6]:=  | alex = Alexander[TorusKnot[5, 2]][t]  | 
Out[6]=  | -2 1 2  | 
In[7]:=  | Conway[TorusKnot[5, 2]][z]  | 
Out[7]=  | 2 4 1 + 3 z + z  | 
In[8]:=  | Select[AllKnots[], (alex === Alexander[#][t])&]  | 
Out[8]=  | {Knot[5, 1], Knot[10, 132]} | 
In[9]:=  | {KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]} | 
Out[9]=  | {5, 4} | 
In[10]:=  | J=Jones[TorusKnot[5, 2]][q]  | 
Out[10]=  | 2 4 5 6 7 q + q - q + q - q  | 
In[11]:=  | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]  | 
Out[11]=  | {Knot[5, 1], Knot[10, 132]} | 
In[12]:=  | A2Invariant[TorusKnot[5, 2]][q]  | 
Out[12]=  | 6 8 10 12 14 18 20 22 q + q + 2 q + q + q - q - q - q  | 
In[13]:=  | Kauffman[TorusKnot[5, 2]][a, z]  | 
Out[13]=  | 2 2 2 3 3 4 4  | 
In[14]:=  | {Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]} | 
Out[14]=  | {0, 5} | 
In[15]:=  | Kh[TorusKnot[5, 2]][q, t]  | 
Out[15]=  | 3 5 2 7 3 11 4 11  | 

















