T(33,2): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- This knot page was produced from [[Torus Knots Splice Template]] -->

<!-- -->
<!-- -->
<!-- -->

<span id="top"></span>
<span id="top"></span>
<!-- -->

{{Knot Navigation Links|ext=jpg}}
{{Knot Navigation Links|ext=jpg}}


{{Torus Knot Page Header|m=33|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,1,-2,3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.jpg]]
|{{Torus Knot Site Links|m=33|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,1,-2,3/goTop.html}}

{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 23: Line 17:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=5.26316%><table cellpadding=0 cellspacing=0>
<td width=5.26316%><table cellpadding=0 cellspacing=0>
Line 70: Line 60:
<tr align=center><td>33</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>33</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>31</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>31</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}


{{Computer Talk Header}}
{{Computer Talk Header}}
Line 119: Line 109:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr>
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[33, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[33, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -14 -13 -12 -11 -10 -9 -8 -7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -14 -13
1 + t - t + t - t + t - t + t - t + t - t +
1 + Alternating - Alternating + Alternating - Alternating +
-6 -5 -4 -3 -2 1 2 3 4 5 6 7
-12 -11 -10 -9
t - t + t - t + t - - - t + t - t + t - t + t - t +
Alternating - Alternating + Alternating - Alternating +
t
8 9 10 11 12 13 14 15 16
-8 -7 -6 -5
t - t + t - t + t - t + t - t + t</nowiki></pre></td></tr>
Alternating - Alternating + Alternating - Alternating +
-4 -3 -2 1
Alternating - Alternating + Alternating - ----------- -
Alternating
2 3 4
Alternating + Alternating - Alternating + Alternating -
5 6 7 8
Alternating + Alternating - Alternating + Alternating -
9 10 11 12
Alternating + Alternating - Alternating + Alternating -
13 14 15 16
Alternating + Alternating - Alternating + Alternating</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[33, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[33, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
Line 160: Line 165:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1496}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1496}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[33, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[33, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 39 4 43 5 43 6 47 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 2 35 3 39 4 39
q + q + q t + q t + q t + q t + q t + q t +
q + q + Alternating q + Alternating q + Alternating q +
5 43 6 43 7 47
Alternating q + Alternating q + Alternating q +
8 47 9 51 10 51
Alternating q + Alternating q + Alternating q +
11 55 12 55 13 59
Alternating q + Alternating q + Alternating q +
14 59 15 63 16 63
Alternating q + Alternating q + Alternating q +
17 67 18 67 19 71
Alternating q + Alternating q + Alternating q +
20 71 21 75 22 75
Alternating q + Alternating q + Alternating q +
47 8 51 9 51 10 55 11 55 12 59 13 59 14
23 79 24 79 25 83
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
63 15 63 16 67 17 67 18 71 19 71 20 75 21
26 83 27 87 28 87
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
75 22 79 23 79 24 83 25 83 26 87 27 87 28
29 91 30 91 31 95
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
91 29 91 30 95 31 95 32 99 33
32 95 33 99
q t + q t + q t + q t + q t</nowiki></pre></td></tr>
Alternating q + Alternating q</nowiki></pre></td></tr>
</table>
</table>


{{Category:Knot Page}}
[[Category:Knot Page]]

Revision as of 19:46, 28 August 2005

T(11,4).jpg

T(11,4)

T(17,3).jpg

T(17,3)

T(33,2).jpg Visit [[[:Template:KnotilusURL]] T(33,2)'s page] at Knotilus!

Visit T(33,2)'s page at the original Knot Atlas!

T(33,2) Quick Notes


T(33,2) Further Notes and Views

Knot presentations

Planar diagram presentation X31,65,32,64 X65,33,66,32 X33,1,34,66 X1,35,2,34 X35,3,36,2 X3,37,4,36 X37,5,38,4 X5,39,6,38 X39,7,40,6 X7,41,8,40 X41,9,42,8 X9,43,10,42 X43,11,44,10 X11,45,12,44 X45,13,46,12 X13,47,14,46 X47,15,48,14 X15,49,16,48 X49,17,50,16 X17,51,18,50 X51,19,52,18 X19,53,20,52 X53,21,54,20 X21,55,22,54 X55,23,56,22 X23,57,24,56 X57,25,58,24 X25,59,26,58 X59,27,60,26 X27,61,28,60 X61,29,62,28 X29,63,30,62 X63,31,64,30
Gauss code -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 1, -2, 3
Dowker-Thistlethwaite code 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Conway Notation Data:T(33,2)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 32 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(33,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(33,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (136, 1496)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(33,2)/V 2,1 Data:T(33,2)/V 3,1 Data:T(33,2)/V 4,1 Data:T(33,2)/V 4,2 Data:T(33,2)/V 4,3 Data:T(33,2)/V 5,1 Data:T(33,2)/V 5,2 Data:T(33,2)/V 5,3 Data:T(33,2)/V 5,4 Data:T(33,2)/V 6,1 Data:T(33,2)/V 6,2 Data:T(33,2)/V 6,3 Data:T(33,2)/V 6,4 Data:T(33,2)/V 6,5 Data:T(33,2)/V 6,6 Data:T(33,2)/V 6,7 Data:T(33,2)/V 6,8 Data:T(33,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 32 is the signature of T(33,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789101112131415161718192021222324252627282930313233χ
99                                 1-1
97                                  0
95                               11 0
93                                  0
91                             11   0
89                                  0
87                           11     0
85                                  0
83                         11       0
81                                  0
79                       11         0
77                                  0
75                     11           0
73                                  0
71                   11             0
69                                  0
67                 11               0
65                                  0
63               11                 0
61                                  0
59             11                   0
57                                  0
55           11                     0
53                                  0
51         11                       0
49                                  0
47       11                         0
45                                  0
43     11                           0
41                                  0
39   11                             0
37                                  0
35  1                               1
331                                 1
311                                 1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[33, 2]]
Out[2]=  
33
In[3]:=
PD[TorusKnot[33, 2]]
Out[3]=  
PD[X[31, 65, 32, 64], X[65, 33, 66, 32], X[33, 1, 34, 66], 
 X[1, 35, 2, 34], X[35, 3, 36, 2], X[3, 37, 4, 36], X[37, 5, 38, 4], 

 X[5, 39, 6, 38], X[39, 7, 40, 6], X[7, 41, 8, 40], X[41, 9, 42, 8], 

 X[9, 43, 10, 42], X[43, 11, 44, 10], X[11, 45, 12, 44], 

 X[45, 13, 46, 12], X[13, 47, 14, 46], X[47, 15, 48, 14], 

 X[15, 49, 16, 48], X[49, 17, 50, 16], X[17, 51, 18, 50], 

 X[51, 19, 52, 18], X[19, 53, 20, 52], X[53, 21, 54, 20], 

 X[21, 55, 22, 54], X[55, 23, 56, 22], X[23, 57, 24, 56], 

 X[57, 25, 58, 24], X[25, 59, 26, 58], X[59, 27, 60, 26], 

 X[27, 61, 28, 60], X[61, 29, 62, 28], X[29, 63, 30, 62], 

X[63, 31, 64, 30]]
In[4]:=
GaussCode[TorusKnot[33, 2]]
Out[4]=  
GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 
 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, 

 -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 

 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, 

-33, 1, -2, 3]
In[5]:=
BR[TorusKnot[33, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[33, 2]][t]
Out[6]=  
               -16              -15              -14              -13

1 + Alternating - Alternating + Alternating - Alternating +

            -12              -11              -10              -9
 Alternating    - Alternating    + Alternating    - Alternating   + 

            -8              -7              -6              -5
 Alternating   - Alternating   + Alternating   - Alternating   + 

            -4              -3              -2        1
 Alternating   - Alternating   + Alternating   - ----------- - 
                                                 Alternating

                          2              3              4
 Alternating + Alternating  - Alternating  + Alternating  - 

            5              6              7              8
 Alternating  + Alternating  - Alternating  + Alternating  - 

            9              10              11              12
 Alternating  + Alternating   - Alternating   + Alternating   - 

            13              14              15              16
Alternating + Alternating - Alternating + Alternating
In[7]:=
Conway[TorusKnot[33, 2]][z]
Out[7]=  
         2         4          6           8           10           12

1 + 136 z + 3060 z + 27132 z + 125970 z + 352716 z + 646646 z +

         14           16           18           20          22
 817190 z   + 735471 z   + 480700 z   + 230230 z   + 80730 z   + 

        24         26        28       30    32
20475 z + 3654 z + 435 z + 31 z + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[33, 2]], KnotSignature[TorusKnot[33, 2]]}
Out[9]=  
{33, 32}
In[10]:=
J=Jones[TorusKnot[33, 2]][q]
Out[10]=  
 16    18    19    20    21    22    23    24    25    26    27    28

q + q - q + q - q + q - q + q - q + q - q + q -

  29    30    31    32    33    34    35    36    37    38    39
 q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 

  40    41    42    43    44    45    46    47    48    49
q - q + q - q + q - q + q - q + q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[33, 2]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[33, 2]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[33, 2]], Vassiliev[3][TorusKnot[33, 2]]}
Out[14]=  
{0, 1496}
In[15]:=
Kh[TorusKnot[33, 2]][q, t]
Out[15]=  
 31    33              2  35              3  39              4  39

q + q + Alternating q + Alternating q + Alternating q +

            5  43              6  43              7  47
 Alternating  q   + Alternating  q   + Alternating  q   + 

            8  47              9  51              10  51
 Alternating  q   + Alternating  q   + Alternating   q   + 

            11  55              12  55              13  59
 Alternating   q   + Alternating   q   + Alternating   q   + 

            14  59              15  63              16  63
 Alternating   q   + Alternating   q   + Alternating   q   + 

            17  67              18  67              19  71
 Alternating   q   + Alternating   q   + Alternating   q   + 

            20  71              21  75              22  75
 Alternating   q   + Alternating   q   + Alternating   q   + 

            23  79              24  79              25  83
 Alternating   q   + Alternating   q   + Alternating   q   + 

            26  83              27  87              28  87
 Alternating   q   + Alternating   q   + Alternating   q   + 

            29  91              30  91              31  95
 Alternating   q   + Alternating   q   + Alternating   q   + 

            32  95              33  99
Alternating q + Alternating q