10 70: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- -->
k = 70 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-2,3,-4,2,-6,8,-7,9,-10,5,-9,6,-8,7/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=70|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-2,3,-4,2,-6,8,-7,9,-10,5,-9,6,-8,7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 74: Line 38:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{20}-3 q^{19}+2 q^{18}+7 q^{17}-17 q^{16}+8 q^{15}+25 q^{14}-48 q^{13}+15 q^{12}+58 q^{11}-84 q^{10}+12 q^9+90 q^8-101 q^7-q^6+103 q^5-90 q^4-17 q^3+92 q^2-59 q-26+62 q^{-1} -25 q^{-2} -22 q^{-3} +28 q^{-4} -5 q^{-5} -10 q^{-6} +7 q^{-7} -2 q^{-9} + q^{-10} </math> |

coloured_jones_3 = <math>q^{39}-3 q^{38}+2 q^{37}+3 q^{36}-q^{35}-11 q^{34}+6 q^{33}+21 q^{32}-13 q^{31}-39 q^{30}+25 q^{29}+68 q^{28}-38 q^{27}-118 q^{26}+56 q^{25}+181 q^{24}-64 q^{23}-260 q^{22}+59 q^{21}+347 q^{20}-40 q^{19}-427 q^{18}+7 q^{17}+487 q^{16}+41 q^{15}-527 q^{14}-90 q^{13}+535 q^{12}+143 q^{11}-521 q^{10}-188 q^9+480 q^8+229 q^7-421 q^6-260 q^5+349 q^4+278 q^3-269 q^2-276 q+183+260 q^{-1} -107 q^{-2} -223 q^{-3} +42 q^{-4} +178 q^{-5} -3 q^{-6} -120 q^{-7} -27 q^{-8} +81 q^{-9} +25 q^{-10} -39 q^{-11} -25 q^{-12} +21 q^{-13} +13 q^{-14} -6 q^{-15} -9 q^{-16} +4 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math> |
{{Display Coloured Jones|J2=<math>q^{20}-3 q^{19}+2 q^{18}+7 q^{17}-17 q^{16}+8 q^{15}+25 q^{14}-48 q^{13}+15 q^{12}+58 q^{11}-84 q^{10}+12 q^9+90 q^8-101 q^7-q^6+103 q^5-90 q^4-17 q^3+92 q^2-59 q-26+62 q^{-1} -25 q^{-2} -22 q^{-3} +28 q^{-4} -5 q^{-5} -10 q^{-6} +7 q^{-7} -2 q^{-9} + q^{-10} </math>|J3=<math>q^{39}-3 q^{38}+2 q^{37}+3 q^{36}-q^{35}-11 q^{34}+6 q^{33}+21 q^{32}-13 q^{31}-39 q^{30}+25 q^{29}+68 q^{28}-38 q^{27}-118 q^{26}+56 q^{25}+181 q^{24}-64 q^{23}-260 q^{22}+59 q^{21}+347 q^{20}-40 q^{19}-427 q^{18}+7 q^{17}+487 q^{16}+41 q^{15}-527 q^{14}-90 q^{13}+535 q^{12}+143 q^{11}-521 q^{10}-188 q^9+480 q^8+229 q^7-421 q^6-260 q^5+349 q^4+278 q^3-269 q^2-276 q+183+260 q^{-1} -107 q^{-2} -223 q^{-3} +42 q^{-4} +178 q^{-5} -3 q^{-6} -120 q^{-7} -27 q^{-8} +81 q^{-9} +25 q^{-10} -39 q^{-11} -25 q^{-12} +21 q^{-13} +13 q^{-14} -6 q^{-15} -9 q^{-16} +4 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math>|J4=<math>q^{64}-3 q^{63}+2 q^{62}+3 q^{61}-5 q^{60}+5 q^{59}-13 q^{58}+12 q^{57}+15 q^{56}-27 q^{55}+13 q^{54}-36 q^{53}+49 q^{52}+49 q^{51}-99 q^{50}+3 q^{49}-70 q^{48}+174 q^{47}+149 q^{46}-271 q^{45}-120 q^{44}-161 q^{43}+483 q^{42}+460 q^{41}-518 q^{40}-497 q^{39}-473 q^{38}+949 q^{37}+1130 q^{36}-624 q^{35}-1082 q^{34}-1167 q^{33}+1309 q^{32}+2053 q^{31}-375 q^{30}-1569 q^{29}-2096 q^{28}+1305 q^{27}+2827 q^{26}+163 q^{25}-1663 q^{24}-2883 q^{23}+945 q^{22}+3142 q^{21}+726 q^{20}-1365 q^{19}-3266 q^{18}+423 q^{17}+2971 q^{16}+1147 q^{15}-823 q^{14}-3238 q^{13}-136 q^{12}+2441 q^{11}+1408 q^{10}-160 q^9-2867 q^8-666 q^7+1653 q^6+1471 q^5+516 q^4-2185 q^3-1021 q^2+747 q+1227+991 q^{-1} -1284 q^{-2} -1013 q^{-3} -16 q^{-4} +704 q^{-5} +1052 q^{-6} -460 q^{-7} -654 q^{-8} -361 q^{-9} +173 q^{-10} +725 q^{-11} -5 q^{-12} -226 q^{-13} -308 q^{-14} -93 q^{-15} +324 q^{-16} +80 q^{-17} -129 q^{-19} -103 q^{-20} +92 q^{-21} +30 q^{-22} +34 q^{-23} -27 q^{-24} -43 q^{-25} +20 q^{-26} + q^{-27} +13 q^{-28} -2 q^{-29} -11 q^{-30} +5 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math>|J5=<math>q^{95}-3 q^{94}+2 q^{93}+3 q^{92}-5 q^{91}+q^{90}+3 q^{89}-7 q^{88}+6 q^{87}+11 q^{86}-16 q^{85}-8 q^{84}+12 q^{83}+q^{82}+15 q^{81}+4 q^{80}-44 q^{79}-34 q^{78}+42 q^{77}+87 q^{76}+51 q^{75}-73 q^{74}-208 q^{73}-137 q^{72}+167 q^{71}+437 q^{70}+312 q^{69}-274 q^{68}-835 q^{67}-681 q^{66}+348 q^{65}+1436 q^{64}+1373 q^{63}-269 q^{62}-2273 q^{61}-2472 q^{60}-80 q^{59}+3171 q^{58}+4065 q^{57}+935 q^{56}-4047 q^{55}-6095 q^{54}-2335 q^{53}+4620 q^{52}+8347 q^{51}+4373 q^{50}-4704 q^{49}-10607 q^{48}-6876 q^{47}+4198 q^{46}+12548 q^{45}+9579 q^{44}-3064 q^{43}-13941 q^{42}-12213 q^{41}+1464 q^{40}+14674 q^{39}+14486 q^{38}+350 q^{37}-14697 q^{36}-16191 q^{35}-2244 q^{34}+14173 q^{33}+17305 q^{32}+3936 q^{31}-13214 q^{30}-17773 q^{29}-5444 q^{28}+11957 q^{27}+17793 q^{26}+6668 q^{25}-10513 q^{24}-17367 q^{23}-7718 q^{22}+8886 q^{21}+16646 q^{20}+8619 q^{19}-7105 q^{18}-15615 q^{17}-9401 q^{16}+5138 q^{15}+14282 q^{14}+10023 q^{13}-3010 q^{12}-12602 q^{11}-10415 q^{10}+814 q^9+10572 q^8+10430 q^7+1296 q^6-8196 q^5-9972 q^4-3162 q^3+5682 q^2+8947 q+4517-3141 q^{-1} -7437 q^{-2} -5245 q^{-3} +900 q^{-4} +5565 q^{-5} +5266 q^{-6} +870 q^{-7} -3642 q^{-8} -4645 q^{-9} -1946 q^{-10} +1815 q^{-11} +3645 q^{-12} +2407 q^{-13} -491 q^{-14} -2455 q^{-15} -2224 q^{-16} -452 q^{-17} +1375 q^{-18} +1823 q^{-19} +775 q^{-20} -560 q^{-21} -1175 q^{-22} -850 q^{-23} +46 q^{-24} +707 q^{-25} +637 q^{-26} +163 q^{-27} -286 q^{-28} -441 q^{-29} -209 q^{-30} +105 q^{-31} +219 q^{-32} +162 q^{-33} +15 q^{-34} -118 q^{-35} -100 q^{-36} -11 q^{-37} +26 q^{-38} +49 q^{-39} +32 q^{-40} -19 q^{-41} -26 q^{-42} -3 q^{-44} +4 q^{-45} +12 q^{-46} -3 q^{-47} -7 q^{-48} +3 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math>|J6=<math>q^{132}-3 q^{131}+2 q^{130}+3 q^{129}-5 q^{128}+q^{127}-q^{126}+9 q^{125}-13 q^{124}+2 q^{123}+22 q^{122}-27 q^{121}-q^{120}+4 q^{119}+34 q^{118}-36 q^{117}-15 q^{116}+62 q^{115}-76 q^{114}+q^{113}+48 q^{112}+120 q^{111}-105 q^{110}-118 q^{109}+68 q^{108}-209 q^{107}+82 q^{106}+303 q^{105}+468 q^{104}-208 q^{103}-563 q^{102}-329 q^{101}-769 q^{100}+296 q^{99}+1335 q^{98}+1900 q^{97}+163 q^{96}-1641 q^{95}-2263 q^{94}-3195 q^{93}-80 q^{92}+3845 q^{91}+6496 q^{90}+3249 q^{89}-2433 q^{88}-7081 q^{87}-10749 q^{86}-4297 q^{85}+6688 q^{84}+16430 q^{83}+13649 q^{82}+1459 q^{81}-13393 q^{80}-26300 q^{79}-18239 q^{78}+4228 q^{77}+29736 q^{76}+34569 q^{75}+17057 q^{74}-14246 q^{73}-46801 q^{72}-44892 q^{71}-11370 q^{70}+37819 q^{69}+61374 q^{68}+46633 q^{67}-1246 q^{66}-61813 q^{65}-77627 q^{64}-41330 q^{63}+31612 q^{62}+81939 q^{61}+81732 q^{60}+25819 q^{59}-61850 q^{58}-103039 q^{57}-75846 q^{56}+11423 q^{55}+86852 q^{54}+108599 q^{53}+56676 q^{52}-47652 q^{51}-112329 q^{50}-101819 q^{49}-13005 q^{48}+77413 q^{47}+119771 q^{46}+79786 q^{45}-28125 q^{44}-107350 q^{43}-113575 q^{42}-32309 q^{41}+61603 q^{40}+117779 q^{39}+91486 q^{38}-10585 q^{37}-95095 q^{36}-114274 q^{35}-44687 q^{34}+44956 q^{33}+108708 q^{32}+95399 q^{31}+4470 q^{30}-79576 q^{29}-109084 q^{28}-53794 q^{27}+27115 q^{26}+95237 q^{25}+95588 q^{24}+20213 q^{23}-59806 q^{22}-99283 q^{21}-62145 q^{20}+5585 q^{19}+75646 q^{18}+91588 q^{17}+37316 q^{16}-33836 q^{15}-82040 q^{14}-67029 q^{13}-18577 q^{12}+48061 q^{11}+78980 q^{10}+50761 q^9-4104 q^8-55164 q^7-62105 q^6-38341 q^5+15871 q^4+55016 q^3+52520 q^2+20731 q-22807-44078 q^{-1} -44550 q^{-2} -11026 q^{-3} +24632 q^{-4} +39273 q^{-5} +30852 q^{-6} +4104 q^{-7} -18706 q^{-8} -34494 q^{-9} -22650 q^{-10} -415 q^{-11} +17893 q^{-12} +24460 q^{-13} +15849 q^{-14} +1816 q^{-15} -16305 q^{-16} -18376 q^{-17} -11053 q^{-18} +783 q^{-19} +10573 q^{-20} +13052 q^{-21} +9531 q^{-22} -2150 q^{-23} -7705 q^{-24} -9079 q^{-25} -5370 q^{-26} +390 q^{-27} +5184 q^{-28} +7230 q^{-29} +2754 q^{-30} -408 q^{-31} -3408 q^{-32} -3874 q^{-33} -2504 q^{-34} +243 q^{-35} +2775 q^{-36} +1961 q^{-37} +1388 q^{-38} -189 q^{-39} -1166 q^{-40} -1587 q^{-41} -787 q^{-42} +472 q^{-43} +471 q^{-44} +773 q^{-45} +385 q^{-46} - q^{-47} -493 q^{-48} -402 q^{-49} -5 q^{-50} -54 q^{-51} +185 q^{-52} +169 q^{-53} +125 q^{-54} -92 q^{-55} -103 q^{-56} +7 q^{-57} -62 q^{-58} +14 q^{-59} +30 q^{-60} +52 q^{-61} -18 q^{-62} -22 q^{-63} +17 q^{-64} -17 q^{-65} -2 q^{-66} +14 q^{-68} -4 q^{-69} -8 q^{-70} +7 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math>|J7=<math>q^{175}-3 q^{174}+2 q^{173}+3 q^{172}-5 q^{171}+q^{170}-q^{169}+5 q^{168}+3 q^{167}-17 q^{166}+13 q^{165}+11 q^{164}-20 q^{163}+q^{162}-4 q^{161}+23 q^{160}+12 q^{159}-63 q^{158}+29 q^{157}+34 q^{156}-34 q^{155}+23 q^{154}-18 q^{153}+55 q^{152}+12 q^{151}-198 q^{150}+3 q^{149}+71 q^{148}+47 q^{147}+230 q^{146}+50 q^{145}+66 q^{144}-145 q^{143}-724 q^{142}-353 q^{141}+13 q^{140}+520 q^{139}+1332 q^{138}+905 q^{137}+355 q^{136}-917 q^{135}-2821 q^{134}-2515 q^{133}-1150 q^{132}+1663 q^{131}+5288 q^{130}+5510 q^{129}+3362 q^{128}-1969 q^{127}-9162 q^{126}-11357 q^{125}-8441 q^{124}+1161 q^{123}+14604 q^{122}+21112 q^{121}+18248 q^{120}+2916 q^{119}-20569 q^{118}-35846 q^{117}-35729 q^{116}-13536 q^{115}+25131 q^{114}+55814 q^{113}+63421 q^{112}+34626 q^{111}-24306 q^{110}-79032 q^{109}-102766 q^{108}-71016 q^{107}+12239 q^{106}+101698 q^{105}+153512 q^{104}+125905 q^{103}+16684 q^{102}-117126 q^{101}-211154 q^{100}-199960 q^{99}-68480 q^{98}+117353 q^{97}+269308 q^{96}+290136 q^{95}+144840 q^{94}-95578 q^{93}-318013 q^{92}-388563 q^{91}-243972 q^{90}+46842 q^{89}+348054 q^{88}+485310 q^{87}+358866 q^{86}+28223 q^{85}-352749 q^{84}-568558 q^{83}-478520 q^{82}-124621 q^{81}+328979 q^{80}+629170 q^{79}+591488 q^{78}+232801 q^{77}-279871 q^{76}-661976 q^{75}-686486 q^{74}-341333 q^{73}+212051 q^{72}+666409 q^{71}+756673 q^{70}+440078 q^{69}-134955 q^{68}-647158 q^{67}-799961 q^{66}-520882 q^{65}+58293 q^{64}+610871 q^{63}+817822 q^{62}+580697 q^{61}+11462 q^{60}-565695 q^{59}-816163 q^{58}-619888 q^{57}-69492 q^{56}+517939 q^{55}+800398 q^{54}+642024 q^{53}+116278 q^{52}-471442 q^{51}-777066 q^{50}-652394 q^{49}-153511 q^{48}+427655 q^{47}+749531 q^{46}+655627 q^{45}+185625 q^{44}-384785 q^{43}-719796 q^{42}-655999 q^{41}-216663 q^{40}+340338 q^{39}+687199 q^{38}+654998 q^{37}+250045 q^{36}-290443 q^{35}-649412 q^{34}-652647 q^{33}-287586 q^{32}+232233 q^{31}+603323 q^{30}+646536 q^{29}+328734 q^{28}-164024 q^{27}-545504 q^{26}-632755 q^{25}-370794 q^{24}+86148 q^{23}+473466 q^{22}+606939 q^{21}+408848 q^{20}-1685 q^{19}-386702 q^{18}-564654 q^{17}-436469 q^{16}-83924 q^{15}+287144 q^{14}+503101 q^{13}+447272 q^{12}+163191 q^{11}-180012 q^{10}-422607 q^9-435763 q^8-227138 q^7+73008 q^6+326292 q^5+399434 q^4+268705 q^3+24117 q^2-221975 q-339762-282160 q^{-1} -101787 q^{-2} +118926 q^{-3} +262600 q^{-4} +267060 q^{-5} +152844 q^{-6} -28173 q^{-7} -177405 q^{-8} -227350 q^{-9} -174130 q^{-10} -41158 q^{-11} +95277 q^{-12} +171190 q^{-13} +167388 q^{-14} +84278 q^{-15} -26119 q^{-16} -109769 q^{-17} -139868 q^{-18} -100408 q^{-19} -22429 q^{-20} +52993 q^{-21} +100264 q^{-22} +94696 q^{-23} +49423 q^{-24} -9197 q^{-25} -59862 q^{-26} -74724 q^{-27} -55918 q^{-28} -18180 q^{-29} +25011 q^{-30} +49184 q^{-31} +49310 q^{-32} +30175 q^{-33} -1650 q^{-34} -25698 q^{-35} -35107 q^{-36} -30072 q^{-37} -11113 q^{-38} +7919 q^{-39} +20617 q^{-40} +23757 q^{-41} +14479 q^{-42} +2152 q^{-43} -8699 q^{-44} -15163 q^{-45} -12732 q^{-46} -6330 q^{-47} +1416 q^{-48} +7932 q^{-49} +8608 q^{-50} +6383 q^{-51} +2116 q^{-52} -2954 q^{-53} -4822 q^{-54} -4734 q^{-55} -2785 q^{-56} +374 q^{-57} +1933 q^{-58} +2786 q^{-59} +2423 q^{-60} +587 q^{-61} -550 q^{-62} -1354 q^{-63} -1434 q^{-64} -631 q^{-65} -213 q^{-66} +446 q^{-67} +864 q^{-68} +490 q^{-69} +218 q^{-70} -137 q^{-71} -324 q^{-72} -175 q^{-73} -247 q^{-74} -81 q^{-75} +171 q^{-76} +125 q^{-77} +112 q^{-78} +4 q^{-79} -47 q^{-80} +22 q^{-81} -62 q^{-82} -62 q^{-83} +19 q^{-84} +18 q^{-85} +32 q^{-86} -4 q^{-87} -19 q^{-88} +25 q^{-89} -4 q^{-90} -16 q^{-91} +10 q^{-94} -2 q^{-95} -9 q^{-96} +6 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math>}}
coloured_jones_4 = <math>q^{64}-3 q^{63}+2 q^{62}+3 q^{61}-5 q^{60}+5 q^{59}-13 q^{58}+12 q^{57}+15 q^{56}-27 q^{55}+13 q^{54}-36 q^{53}+49 q^{52}+49 q^{51}-99 q^{50}+3 q^{49}-70 q^{48}+174 q^{47}+149 q^{46}-271 q^{45}-120 q^{44}-161 q^{43}+483 q^{42}+460 q^{41}-518 q^{40}-497 q^{39}-473 q^{38}+949 q^{37}+1130 q^{36}-624 q^{35}-1082 q^{34}-1167 q^{33}+1309 q^{32}+2053 q^{31}-375 q^{30}-1569 q^{29}-2096 q^{28}+1305 q^{27}+2827 q^{26}+163 q^{25}-1663 q^{24}-2883 q^{23}+945 q^{22}+3142 q^{21}+726 q^{20}-1365 q^{19}-3266 q^{18}+423 q^{17}+2971 q^{16}+1147 q^{15}-823 q^{14}-3238 q^{13}-136 q^{12}+2441 q^{11}+1408 q^{10}-160 q^9-2867 q^8-666 q^7+1653 q^6+1471 q^5+516 q^4-2185 q^3-1021 q^2+747 q+1227+991 q^{-1} -1284 q^{-2} -1013 q^{-3} -16 q^{-4} +704 q^{-5} +1052 q^{-6} -460 q^{-7} -654 q^{-8} -361 q^{-9} +173 q^{-10} +725 q^{-11} -5 q^{-12} -226 q^{-13} -308 q^{-14} -93 q^{-15} +324 q^{-16} +80 q^{-17} -129 q^{-19} -103 q^{-20} +92 q^{-21} +30 q^{-22} +34 q^{-23} -27 q^{-24} -43 q^{-25} +20 q^{-26} + q^{-27} +13 q^{-28} -2 q^{-29} -11 q^{-30} +5 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math> |

coloured_jones_5 = <math>q^{95}-3 q^{94}+2 q^{93}+3 q^{92}-5 q^{91}+q^{90}+3 q^{89}-7 q^{88}+6 q^{87}+11 q^{86}-16 q^{85}-8 q^{84}+12 q^{83}+q^{82}+15 q^{81}+4 q^{80}-44 q^{79}-34 q^{78}+42 q^{77}+87 q^{76}+51 q^{75}-73 q^{74}-208 q^{73}-137 q^{72}+167 q^{71}+437 q^{70}+312 q^{69}-274 q^{68}-835 q^{67}-681 q^{66}+348 q^{65}+1436 q^{64}+1373 q^{63}-269 q^{62}-2273 q^{61}-2472 q^{60}-80 q^{59}+3171 q^{58}+4065 q^{57}+935 q^{56}-4047 q^{55}-6095 q^{54}-2335 q^{53}+4620 q^{52}+8347 q^{51}+4373 q^{50}-4704 q^{49}-10607 q^{48}-6876 q^{47}+4198 q^{46}+12548 q^{45}+9579 q^{44}-3064 q^{43}-13941 q^{42}-12213 q^{41}+1464 q^{40}+14674 q^{39}+14486 q^{38}+350 q^{37}-14697 q^{36}-16191 q^{35}-2244 q^{34}+14173 q^{33}+17305 q^{32}+3936 q^{31}-13214 q^{30}-17773 q^{29}-5444 q^{28}+11957 q^{27}+17793 q^{26}+6668 q^{25}-10513 q^{24}-17367 q^{23}-7718 q^{22}+8886 q^{21}+16646 q^{20}+8619 q^{19}-7105 q^{18}-15615 q^{17}-9401 q^{16}+5138 q^{15}+14282 q^{14}+10023 q^{13}-3010 q^{12}-12602 q^{11}-10415 q^{10}+814 q^9+10572 q^8+10430 q^7+1296 q^6-8196 q^5-9972 q^4-3162 q^3+5682 q^2+8947 q+4517-3141 q^{-1} -7437 q^{-2} -5245 q^{-3} +900 q^{-4} +5565 q^{-5} +5266 q^{-6} +870 q^{-7} -3642 q^{-8} -4645 q^{-9} -1946 q^{-10} +1815 q^{-11} +3645 q^{-12} +2407 q^{-13} -491 q^{-14} -2455 q^{-15} -2224 q^{-16} -452 q^{-17} +1375 q^{-18} +1823 q^{-19} +775 q^{-20} -560 q^{-21} -1175 q^{-22} -850 q^{-23} +46 q^{-24} +707 q^{-25} +637 q^{-26} +163 q^{-27} -286 q^{-28} -441 q^{-29} -209 q^{-30} +105 q^{-31} +219 q^{-32} +162 q^{-33} +15 q^{-34} -118 q^{-35} -100 q^{-36} -11 q^{-37} +26 q^{-38} +49 q^{-39} +32 q^{-40} -19 q^{-41} -26 q^{-42} -3 q^{-44} +4 q^{-45} +12 q^{-46} -3 q^{-47} -7 q^{-48} +3 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{132}-3 q^{131}+2 q^{130}+3 q^{129}-5 q^{128}+q^{127}-q^{126}+9 q^{125}-13 q^{124}+2 q^{123}+22 q^{122}-27 q^{121}-q^{120}+4 q^{119}+34 q^{118}-36 q^{117}-15 q^{116}+62 q^{115}-76 q^{114}+q^{113}+48 q^{112}+120 q^{111}-105 q^{110}-118 q^{109}+68 q^{108}-209 q^{107}+82 q^{106}+303 q^{105}+468 q^{104}-208 q^{103}-563 q^{102}-329 q^{101}-769 q^{100}+296 q^{99}+1335 q^{98}+1900 q^{97}+163 q^{96}-1641 q^{95}-2263 q^{94}-3195 q^{93}-80 q^{92}+3845 q^{91}+6496 q^{90}+3249 q^{89}-2433 q^{88}-7081 q^{87}-10749 q^{86}-4297 q^{85}+6688 q^{84}+16430 q^{83}+13649 q^{82}+1459 q^{81}-13393 q^{80}-26300 q^{79}-18239 q^{78}+4228 q^{77}+29736 q^{76}+34569 q^{75}+17057 q^{74}-14246 q^{73}-46801 q^{72}-44892 q^{71}-11370 q^{70}+37819 q^{69}+61374 q^{68}+46633 q^{67}-1246 q^{66}-61813 q^{65}-77627 q^{64}-41330 q^{63}+31612 q^{62}+81939 q^{61}+81732 q^{60}+25819 q^{59}-61850 q^{58}-103039 q^{57}-75846 q^{56}+11423 q^{55}+86852 q^{54}+108599 q^{53}+56676 q^{52}-47652 q^{51}-112329 q^{50}-101819 q^{49}-13005 q^{48}+77413 q^{47}+119771 q^{46}+79786 q^{45}-28125 q^{44}-107350 q^{43}-113575 q^{42}-32309 q^{41}+61603 q^{40}+117779 q^{39}+91486 q^{38}-10585 q^{37}-95095 q^{36}-114274 q^{35}-44687 q^{34}+44956 q^{33}+108708 q^{32}+95399 q^{31}+4470 q^{30}-79576 q^{29}-109084 q^{28}-53794 q^{27}+27115 q^{26}+95237 q^{25}+95588 q^{24}+20213 q^{23}-59806 q^{22}-99283 q^{21}-62145 q^{20}+5585 q^{19}+75646 q^{18}+91588 q^{17}+37316 q^{16}-33836 q^{15}-82040 q^{14}-67029 q^{13}-18577 q^{12}+48061 q^{11}+78980 q^{10}+50761 q^9-4104 q^8-55164 q^7-62105 q^6-38341 q^5+15871 q^4+55016 q^3+52520 q^2+20731 q-22807-44078 q^{-1} -44550 q^{-2} -11026 q^{-3} +24632 q^{-4} +39273 q^{-5} +30852 q^{-6} +4104 q^{-7} -18706 q^{-8} -34494 q^{-9} -22650 q^{-10} -415 q^{-11} +17893 q^{-12} +24460 q^{-13} +15849 q^{-14} +1816 q^{-15} -16305 q^{-16} -18376 q^{-17} -11053 q^{-18} +783 q^{-19} +10573 q^{-20} +13052 q^{-21} +9531 q^{-22} -2150 q^{-23} -7705 q^{-24} -9079 q^{-25} -5370 q^{-26} +390 q^{-27} +5184 q^{-28} +7230 q^{-29} +2754 q^{-30} -408 q^{-31} -3408 q^{-32} -3874 q^{-33} -2504 q^{-34} +243 q^{-35} +2775 q^{-36} +1961 q^{-37} +1388 q^{-38} -189 q^{-39} -1166 q^{-40} -1587 q^{-41} -787 q^{-42} +472 q^{-43} +471 q^{-44} +773 q^{-45} +385 q^{-46} - q^{-47} -493 q^{-48} -402 q^{-49} -5 q^{-50} -54 q^{-51} +185 q^{-52} +169 q^{-53} +125 q^{-54} -92 q^{-55} -103 q^{-56} +7 q^{-57} -62 q^{-58} +14 q^{-59} +30 q^{-60} +52 q^{-61} -18 q^{-62} -22 q^{-63} +17 q^{-64} -17 q^{-65} -2 q^{-66} +14 q^{-68} -4 q^{-69} -8 q^{-70} +7 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math> |

coloured_jones_7 = <math>q^{175}-3 q^{174}+2 q^{173}+3 q^{172}-5 q^{171}+q^{170}-q^{169}+5 q^{168}+3 q^{167}-17 q^{166}+13 q^{165}+11 q^{164}-20 q^{163}+q^{162}-4 q^{161}+23 q^{160}+12 q^{159}-63 q^{158}+29 q^{157}+34 q^{156}-34 q^{155}+23 q^{154}-18 q^{153}+55 q^{152}+12 q^{151}-198 q^{150}+3 q^{149}+71 q^{148}+47 q^{147}+230 q^{146}+50 q^{145}+66 q^{144}-145 q^{143}-724 q^{142}-353 q^{141}+13 q^{140}+520 q^{139}+1332 q^{138}+905 q^{137}+355 q^{136}-917 q^{135}-2821 q^{134}-2515 q^{133}-1150 q^{132}+1663 q^{131}+5288 q^{130}+5510 q^{129}+3362 q^{128}-1969 q^{127}-9162 q^{126}-11357 q^{125}-8441 q^{124}+1161 q^{123}+14604 q^{122}+21112 q^{121}+18248 q^{120}+2916 q^{119}-20569 q^{118}-35846 q^{117}-35729 q^{116}-13536 q^{115}+25131 q^{114}+55814 q^{113}+63421 q^{112}+34626 q^{111}-24306 q^{110}-79032 q^{109}-102766 q^{108}-71016 q^{107}+12239 q^{106}+101698 q^{105}+153512 q^{104}+125905 q^{103}+16684 q^{102}-117126 q^{101}-211154 q^{100}-199960 q^{99}-68480 q^{98}+117353 q^{97}+269308 q^{96}+290136 q^{95}+144840 q^{94}-95578 q^{93}-318013 q^{92}-388563 q^{91}-243972 q^{90}+46842 q^{89}+348054 q^{88}+485310 q^{87}+358866 q^{86}+28223 q^{85}-352749 q^{84}-568558 q^{83}-478520 q^{82}-124621 q^{81}+328979 q^{80}+629170 q^{79}+591488 q^{78}+232801 q^{77}-279871 q^{76}-661976 q^{75}-686486 q^{74}-341333 q^{73}+212051 q^{72}+666409 q^{71}+756673 q^{70}+440078 q^{69}-134955 q^{68}-647158 q^{67}-799961 q^{66}-520882 q^{65}+58293 q^{64}+610871 q^{63}+817822 q^{62}+580697 q^{61}+11462 q^{60}-565695 q^{59}-816163 q^{58}-619888 q^{57}-69492 q^{56}+517939 q^{55}+800398 q^{54}+642024 q^{53}+116278 q^{52}-471442 q^{51}-777066 q^{50}-652394 q^{49}-153511 q^{48}+427655 q^{47}+749531 q^{46}+655627 q^{45}+185625 q^{44}-384785 q^{43}-719796 q^{42}-655999 q^{41}-216663 q^{40}+340338 q^{39}+687199 q^{38}+654998 q^{37}+250045 q^{36}-290443 q^{35}-649412 q^{34}-652647 q^{33}-287586 q^{32}+232233 q^{31}+603323 q^{30}+646536 q^{29}+328734 q^{28}-164024 q^{27}-545504 q^{26}-632755 q^{25}-370794 q^{24}+86148 q^{23}+473466 q^{22}+606939 q^{21}+408848 q^{20}-1685 q^{19}-386702 q^{18}-564654 q^{17}-436469 q^{16}-83924 q^{15}+287144 q^{14}+503101 q^{13}+447272 q^{12}+163191 q^{11}-180012 q^{10}-422607 q^9-435763 q^8-227138 q^7+73008 q^6+326292 q^5+399434 q^4+268705 q^3+24117 q^2-221975 q-339762-282160 q^{-1} -101787 q^{-2} +118926 q^{-3} +262600 q^{-4} +267060 q^{-5} +152844 q^{-6} -28173 q^{-7} -177405 q^{-8} -227350 q^{-9} -174130 q^{-10} -41158 q^{-11} +95277 q^{-12} +171190 q^{-13} +167388 q^{-14} +84278 q^{-15} -26119 q^{-16} -109769 q^{-17} -139868 q^{-18} -100408 q^{-19} -22429 q^{-20} +52993 q^{-21} +100264 q^{-22} +94696 q^{-23} +49423 q^{-24} -9197 q^{-25} -59862 q^{-26} -74724 q^{-27} -55918 q^{-28} -18180 q^{-29} +25011 q^{-30} +49184 q^{-31} +49310 q^{-32} +30175 q^{-33} -1650 q^{-34} -25698 q^{-35} -35107 q^{-36} -30072 q^{-37} -11113 q^{-38} +7919 q^{-39} +20617 q^{-40} +23757 q^{-41} +14479 q^{-42} +2152 q^{-43} -8699 q^{-44} -15163 q^{-45} -12732 q^{-46} -6330 q^{-47} +1416 q^{-48} +7932 q^{-49} +8608 q^{-50} +6383 q^{-51} +2116 q^{-52} -2954 q^{-53} -4822 q^{-54} -4734 q^{-55} -2785 q^{-56} +374 q^{-57} +1933 q^{-58} +2786 q^{-59} +2423 q^{-60} +587 q^{-61} -550 q^{-62} -1354 q^{-63} -1434 q^{-64} -631 q^{-65} -213 q^{-66} +446 q^{-67} +864 q^{-68} +490 q^{-69} +218 q^{-70} -137 q^{-71} -324 q^{-72} -175 q^{-73} -247 q^{-74} -81 q^{-75} +171 q^{-76} +125 q^{-77} +112 q^{-78} +4 q^{-79} -47 q^{-80} +22 q^{-81} -62 q^{-82} -62 q^{-83} +19 q^{-84} +18 q^{-85} +32 q^{-86} -4 q^{-87} -19 q^{-88} +25 q^{-89} -4 q^{-90} -16 q^{-91} +10 q^{-94} -2 q^{-95} -9 q^{-96} +6 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[5, 16, 6, 17], X[11, 19, 12, 18], X[13, 1, 14, 20],
X[5, 16, 6, 17], X[11, 19, 12, 18], X[13, 1, 14, 20],
X[19, 13, 20, 12], X[17, 15, 18, 14], X[15, 6, 16, 7]]</nowiki></pre></td></tr>
X[19, 13, 20, 12], X[17, 15, 18, 14], X[15, 6, 16, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 70]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9,
6, -8, 7]</nowiki></pre></td></tr>
6, -8, 7]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 70]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 16, 10, 2, 18, 20, 6, 14, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 16, 10, 2, 18, 20, 6, 14, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, -3, 2, 2, 2, 4, -3, 4}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, -1, -3, 2, 2, 2, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 70]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 70]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_70_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 70]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 70]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 70]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 16 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 70]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_70_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 70]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 70]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 16 2 3
-19 + t - -- + -- + 16 t - 7 t + t
-19 + t - -- + -- + 16 t - 7 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 70]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 70]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - 3 z - z + z</nowiki></pre></td></tr>
1 - 3 z - z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 70]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 70]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 70]], KnotSignature[Knot[10, 70]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{67, 2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 70]], KnotSignature[Knot[10, 70]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 70]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{67, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 5 2 3 4 5 6 7

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 70]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 5 2 3 4 5 6 7
-8 + q - -- + - + 10 q - 11 q + 11 q - 9 q + 6 q - 3 q + q
-8 + q - -- + - + 10 q - 11 q + 11 q - 9 q + 6 q - 3 q + q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 70]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 70]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 70]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 2 2 2 4 6 8 10 14

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 70]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 2 2 2 4 6 8 10 14
-1 + q + q + -- - -- + q - 2 q + 3 q - q + q - 2 q +
-1 + q + q + -- - -- + q - 2 q + 3 q - q + q - 2 q +
4 2
4 2
Line 149: Line 100:
16 18 22
16 18 22
2 q - q + q</nowiki></pre></td></tr>
2 q - q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 70]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 70]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
-6 2 3 2 2 z 4 z 4 z 2 2 4
-6 2 3 2 2 z 4 z 4 z 2 2 4
-3 + a - -- + -- + 2 a - 5 z + -- - ---- + ---- + a z - 2 z -
-3 + a - -- + -- + 2 a - 5 z + -- - ---- + ---- + a z - 2 z -
Line 162: Line 112:
4 2 2
4 2 2
a a a</nowiki></pre></td></tr>
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 70]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 70]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-6 2 3 2 z z z 2 z 4 z
-6 2 3 2 z z z 2 z 4 z
-3 - a - -- - -- - 2 a + -- + -- + -- - a z + 10 z - -- + ---- +
-3 - a - -- - -- - 2 a + -- + -- + -- - a z + 10 z - -- + ---- +
Line 193: Line 142:
4 2 3 a
4 2 3 a
a a a</nowiki></pre></td></tr>
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 70]], Vassiliev[3][Knot[10, 70]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 70]], Vassiliev[3][Knot[10, 70]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 70]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 4 1 4 4 q

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 70]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 4 1 4 4 q
6 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
6 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
7 4 5 3 3 3 3 2 2 q t t
Line 208: Line 155:
11 4 11 5 13 5 15 6
11 4 11 5 13 5 15 6
4 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
4 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 70], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 70], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 7 10 5 28 22 25 62 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 7 10 5 28 22 25 62 2
-26 + q - -- + -- - -- - -- + -- - -- - -- + -- - 59 q + 92 q -
-26 + q - -- + -- - -- - -- + -- - -- - -- + -- - 59 q + 92 q -
9 7 6 5 4 3 2 q
9 7 6 5 4 3 2 q
Line 223: Line 169:
19 20
19 20
3 q + q</nowiki></pre></td></tr>
3 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:36, 30 August 2005

10 69.gif

10_69

10 71.gif

10_71

10 70.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 70's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 70 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,19,12,18 X13,1,14,20 X19,13,20,12 X17,15,18,14 X15,6,16,7
Gauss code -1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9, 6, -8, 7
Dowker-Thistlethwaite code 4 8 16 10 2 18 20 6 14 12
Conway Notation [22,3,2+]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

10 70 ML.gif 10 70 AP.gif
[{13, 10}, {11, 9}, {10, 12}, {3, 11}, {8, 4}, {9, 7}, {5, 8}, {7, 13}, {4, 6}, {2, 5}, {1, 3}, {12, 2}, {6, 1}]

[edit Notes on presentations of 10 70]

Knot 10_70.
A graph, knot 10_70.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-9]
Hyperbolic Volume 12.5109
A-Polynomial See Data:10 70/A-polynomial

[edit Notes for 10 70's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Topological 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1}
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 10 70's four dimensional invariants]

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+16 t-19+16 t^{-1} -7 t^{-2} + t^{-3} }
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-3 z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 67, 2 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-3 q^6+6 q^5-9 q^4+11 q^3-11 q^2+10 q-8+5 q^{-1} -2 q^{-2} + q^{-3} }
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +3 z^4 a^{-2} -2 z^4 a^{-4} -2 z^4+a^2 z^2+4 z^2 a^{-2} -4 z^2 a^{-4} +z^2 a^{-6} -5 z^2+2 a^2+3 a^{-2} -2 a^{-4} + a^{-6} -3}
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -12} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -16} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 72} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 82} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 46} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 192} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{896}{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 80} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -288} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 128} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -984} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -552} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3871}{10}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2746}{15}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3434}{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{373}{2}}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 70. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
15          11
13         2 -2
11        41 3
9       52  -3
7      64   2
5     55    0
3    56     -1
1   46      2
-1  14       -3
-3 14        3
-5 1         -1
-71          1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

The Coloured Jones Polynomials