5 2: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 5 |
<!-- -->
k = 2 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,1,-3,4,-5,2,-4,3/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=5|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,1,-3,4,-5,2,-4,3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 6 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 6, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = [[K11n57]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n57]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=20.%><table cellpadding=0 cellspacing=0>
<td width=20.%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>&chi;</td></tr>
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>&chi;</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 67: Line 31:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-2} - q^{-3} +3 q^{-5} -2 q^{-6} - q^{-7} +4 q^{-8} -3 q^{-9} - q^{-10} +3 q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} - q^{-15} - q^{-16} + q^{-17} </math> |

coloured_jones_3 = <math> q^{-3} - q^{-4} + q^{-6} +2 q^{-7} -2 q^{-8} -2 q^{-9} +2 q^{-10} +4 q^{-11} -3 q^{-12} -3 q^{-13} +2 q^{-14} +5 q^{-15} -4 q^{-16} -4 q^{-17} +2 q^{-18} +4 q^{-19} -3 q^{-20} -3 q^{-21} +2 q^{-22} +3 q^{-23} - q^{-24} -3 q^{-25} + q^{-26} +2 q^{-27} -2 q^{-29} + q^{-31} + q^{-32} - q^{-33} </math> |
{{Display Coloured Jones|J2=<math> q^{-2} - q^{-3} +3 q^{-5} -2 q^{-6} - q^{-7} +4 q^{-8} -3 q^{-9} - q^{-10} +3 q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} - q^{-15} - q^{-16} + q^{-17} </math>|J3=<math> q^{-3} - q^{-4} + q^{-6} +2 q^{-7} -2 q^{-8} -2 q^{-9} +2 q^{-10} +4 q^{-11} -3 q^{-12} -3 q^{-13} +2 q^{-14} +5 q^{-15} -4 q^{-16} -4 q^{-17} +2 q^{-18} +4 q^{-19} -3 q^{-20} -3 q^{-21} +2 q^{-22} +3 q^{-23} - q^{-24} -3 q^{-25} + q^{-26} +2 q^{-27} -2 q^{-29} + q^{-31} + q^{-32} - q^{-33} </math>|J4=<math> q^{-4} - q^{-5} + q^{-7} +2 q^{-9} -3 q^{-10} - q^{-11} +2 q^{-12} + q^{-13} +5 q^{-14} -6 q^{-15} -3 q^{-16} +2 q^{-17} +2 q^{-18} +7 q^{-19} -8 q^{-20} -4 q^{-21} +2 q^{-22} +2 q^{-23} +9 q^{-24} -9 q^{-25} -5 q^{-26} +2 q^{-27} +2 q^{-28} +8 q^{-29} -8 q^{-30} -4 q^{-31} +2 q^{-32} +2 q^{-33} +7 q^{-34} -6 q^{-35} -3 q^{-36} + q^{-37} + q^{-38} +6 q^{-39} -4 q^{-40} -2 q^{-41} - q^{-42} +5 q^{-44} -2 q^{-45} - q^{-46} - q^{-47} - q^{-48} +3 q^{-49} - q^{-52} - q^{-53} + q^{-54} </math>|J5=<math> q^{-5} - q^{-6} + q^{-8} + q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} +2 q^{-15} + q^{-16} + q^{-17} -5 q^{-18} -3 q^{-19} + q^{-20} +5 q^{-21} +4 q^{-22} + q^{-23} -7 q^{-24} -6 q^{-25} + q^{-26} +6 q^{-27} +6 q^{-28} +2 q^{-29} -9 q^{-30} -8 q^{-31} + q^{-32} +6 q^{-33} +7 q^{-34} +3 q^{-35} -9 q^{-36} -9 q^{-37} + q^{-38} +6 q^{-39} +8 q^{-40} +2 q^{-41} -8 q^{-42} -8 q^{-43} + q^{-44} +6 q^{-45} +7 q^{-46} + q^{-47} -6 q^{-48} -7 q^{-49} +5 q^{-51} +6 q^{-52} + q^{-53} -4 q^{-54} -5 q^{-55} -2 q^{-56} +3 q^{-57} +5 q^{-58} + q^{-59} - q^{-60} -4 q^{-61} -3 q^{-62} + q^{-63} +3 q^{-64} +2 q^{-65} + q^{-66} -2 q^{-67} -3 q^{-68} + q^{-70} + q^{-71} +2 q^{-72} -2 q^{-74} - q^{-75} + q^{-78} + q^{-79} - q^{-80} </math>|J6=<math> q^{-6} - q^{-7} + q^{-9} - q^{-12} +2 q^{-13} -2 q^{-14} - q^{-15} +3 q^{-16} + q^{-17} + q^{-18} -2 q^{-19} +2 q^{-20} -6 q^{-21} -3 q^{-22} +5 q^{-23} +4 q^{-24} +4 q^{-25} -2 q^{-26} +3 q^{-27} -12 q^{-28} -7 q^{-29} +6 q^{-30} +6 q^{-31} +8 q^{-32} - q^{-33} +4 q^{-34} -17 q^{-35} -10 q^{-36} +6 q^{-37} +8 q^{-38} +10 q^{-39} +6 q^{-41} -20 q^{-42} -12 q^{-43} +6 q^{-44} +8 q^{-45} +11 q^{-46} +8 q^{-48} -21 q^{-49} -13 q^{-50} +6 q^{-51} +8 q^{-52} +12 q^{-53} +8 q^{-55} -20 q^{-56} -12 q^{-57} +6 q^{-58} +8 q^{-59} +11 q^{-60} +6 q^{-62} -18 q^{-63} -11 q^{-64} +5 q^{-65} +7 q^{-66} +9 q^{-67} +6 q^{-69} -15 q^{-70} -9 q^{-71} +3 q^{-72} +5 q^{-73} +7 q^{-74} + q^{-75} +7 q^{-76} -12 q^{-77} -7 q^{-78} + q^{-79} +2 q^{-80} +4 q^{-81} +2 q^{-82} +8 q^{-83} -8 q^{-84} -5 q^{-85} - q^{-86} + q^{-88} +2 q^{-89} +8 q^{-90} -4 q^{-91} -2 q^{-92} -2 q^{-93} - q^{-94} - q^{-95} +6 q^{-97} - q^{-98} - q^{-100} - q^{-101} -2 q^{-102} - q^{-103} +3 q^{-104} + q^{-106} - q^{-109} - q^{-110} + q^{-111} </math>|J7=<math> q^{-7} - q^{-8} + q^{-10} - q^{-13} +2 q^{-15} -2 q^{-16} +2 q^{-18} + q^{-19} + q^{-20} -2 q^{-21} -2 q^{-22} +2 q^{-23} -5 q^{-24} +4 q^{-26} +4 q^{-27} +5 q^{-28} -2 q^{-29} -4 q^{-30} -2 q^{-31} -10 q^{-32} -2 q^{-33} +6 q^{-34} +6 q^{-35} +12 q^{-36} +2 q^{-37} -6 q^{-38} -5 q^{-39} -17 q^{-40} -5 q^{-41} +6 q^{-42} +9 q^{-43} +18 q^{-44} +5 q^{-45} -6 q^{-46} -7 q^{-47} -22 q^{-48} -9 q^{-49} +7 q^{-50} +10 q^{-51} +21 q^{-52} +7 q^{-53} -5 q^{-54} -6 q^{-55} -25 q^{-56} -11 q^{-57} +7 q^{-58} +10 q^{-59} +23 q^{-60} +7 q^{-61} -4 q^{-62} -5 q^{-63} -26 q^{-64} -12 q^{-65} +7 q^{-66} +9 q^{-67} +24 q^{-68} +7 q^{-69} -3 q^{-70} -6 q^{-71} -25 q^{-72} -11 q^{-73} +7 q^{-74} +9 q^{-75} +23 q^{-76} +7 q^{-77} -4 q^{-78} -7 q^{-79} -23 q^{-80} -10 q^{-81} +6 q^{-82} +8 q^{-83} +21 q^{-84} +7 q^{-85} -5 q^{-86} -6 q^{-87} -20 q^{-88} -8 q^{-89} +4 q^{-90} +6 q^{-91} +18 q^{-92} +7 q^{-93} -3 q^{-94} -4 q^{-95} -16 q^{-96} -7 q^{-97} +2 q^{-98} +2 q^{-99} +14 q^{-100} +8 q^{-101} - q^{-102} - q^{-103} -12 q^{-104} -6 q^{-105} - q^{-106} -2 q^{-107} +10 q^{-108} +7 q^{-109} + q^{-110} +2 q^{-111} -6 q^{-112} -5 q^{-113} -3 q^{-114} -5 q^{-115} +6 q^{-116} +5 q^{-117} + q^{-118} +5 q^{-119} -2 q^{-120} -2 q^{-121} -3 q^{-122} -6 q^{-123} +2 q^{-124} +2 q^{-125} +4 q^{-127} + q^{-128} + q^{-129} - q^{-130} -5 q^{-131} - q^{-134} +2 q^{-135} + q^{-136} +2 q^{-137} + q^{-138} -2 q^{-139} - q^{-140} - q^{-142} + q^{-145} + q^{-146} - q^{-147} </math>}}
coloured_jones_4 = <math> q^{-4} - q^{-5} + q^{-7} +2 q^{-9} -3 q^{-10} - q^{-11} +2 q^{-12} + q^{-13} +5 q^{-14} -6 q^{-15} -3 q^{-16} +2 q^{-17} +2 q^{-18} +7 q^{-19} -8 q^{-20} -4 q^{-21} +2 q^{-22} +2 q^{-23} +9 q^{-24} -9 q^{-25} -5 q^{-26} +2 q^{-27} +2 q^{-28} +8 q^{-29} -8 q^{-30} -4 q^{-31} +2 q^{-32} +2 q^{-33} +7 q^{-34} -6 q^{-35} -3 q^{-36} + q^{-37} + q^{-38} +6 q^{-39} -4 q^{-40} -2 q^{-41} - q^{-42} +5 q^{-44} -2 q^{-45} - q^{-46} - q^{-47} - q^{-48} +3 q^{-49} - q^{-52} - q^{-53} + q^{-54} </math> |

coloured_jones_5 = <math> q^{-5} - q^{-6} + q^{-8} + q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} +2 q^{-15} + q^{-16} + q^{-17} -5 q^{-18} -3 q^{-19} + q^{-20} +5 q^{-21} +4 q^{-22} + q^{-23} -7 q^{-24} -6 q^{-25} + q^{-26} +6 q^{-27} +6 q^{-28} +2 q^{-29} -9 q^{-30} -8 q^{-31} + q^{-32} +6 q^{-33} +7 q^{-34} +3 q^{-35} -9 q^{-36} -9 q^{-37} + q^{-38} +6 q^{-39} +8 q^{-40} +2 q^{-41} -8 q^{-42} -8 q^{-43} + q^{-44} +6 q^{-45} +7 q^{-46} + q^{-47} -6 q^{-48} -7 q^{-49} +5 q^{-51} +6 q^{-52} + q^{-53} -4 q^{-54} -5 q^{-55} -2 q^{-56} +3 q^{-57} +5 q^{-58} + q^{-59} - q^{-60} -4 q^{-61} -3 q^{-62} + q^{-63} +3 q^{-64} +2 q^{-65} + q^{-66} -2 q^{-67} -3 q^{-68} + q^{-70} + q^{-71} +2 q^{-72} -2 q^{-74} - q^{-75} + q^{-78} + q^{-79} - q^{-80} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-6} - q^{-7} + q^{-9} - q^{-12} +2 q^{-13} -2 q^{-14} - q^{-15} +3 q^{-16} + q^{-17} + q^{-18} -2 q^{-19} +2 q^{-20} -6 q^{-21} -3 q^{-22} +5 q^{-23} +4 q^{-24} +4 q^{-25} -2 q^{-26} +3 q^{-27} -12 q^{-28} -7 q^{-29} +6 q^{-30} +6 q^{-31} +8 q^{-32} - q^{-33} +4 q^{-34} -17 q^{-35} -10 q^{-36} +6 q^{-37} +8 q^{-38} +10 q^{-39} +6 q^{-41} -20 q^{-42} -12 q^{-43} +6 q^{-44} +8 q^{-45} +11 q^{-46} +8 q^{-48} -21 q^{-49} -13 q^{-50} +6 q^{-51} +8 q^{-52} +12 q^{-53} +8 q^{-55} -20 q^{-56} -12 q^{-57} +6 q^{-58} +8 q^{-59} +11 q^{-60} +6 q^{-62} -18 q^{-63} -11 q^{-64} +5 q^{-65} +7 q^{-66} +9 q^{-67} +6 q^{-69} -15 q^{-70} -9 q^{-71} +3 q^{-72} +5 q^{-73} +7 q^{-74} + q^{-75} +7 q^{-76} -12 q^{-77} -7 q^{-78} + q^{-79} +2 q^{-80} +4 q^{-81} +2 q^{-82} +8 q^{-83} -8 q^{-84} -5 q^{-85} - q^{-86} + q^{-88} +2 q^{-89} +8 q^{-90} -4 q^{-91} -2 q^{-92} -2 q^{-93} - q^{-94} - q^{-95} +6 q^{-97} - q^{-98} - q^{-100} - q^{-101} -2 q^{-102} - q^{-103} +3 q^{-104} + q^{-106} - q^{-109} - q^{-110} + q^{-111} </math> |

coloured_jones_7 = <math> q^{-7} - q^{-8} + q^{-10} - q^{-13} +2 q^{-15} -2 q^{-16} +2 q^{-18} + q^{-19} + q^{-20} -2 q^{-21} -2 q^{-22} +2 q^{-23} -5 q^{-24} +4 q^{-26} +4 q^{-27} +5 q^{-28} -2 q^{-29} -4 q^{-30} -2 q^{-31} -10 q^{-32} -2 q^{-33} +6 q^{-34} +6 q^{-35} +12 q^{-36} +2 q^{-37} -6 q^{-38} -5 q^{-39} -17 q^{-40} -5 q^{-41} +6 q^{-42} +9 q^{-43} +18 q^{-44} +5 q^{-45} -6 q^{-46} -7 q^{-47} -22 q^{-48} -9 q^{-49} +7 q^{-50} +10 q^{-51} +21 q^{-52} +7 q^{-53} -5 q^{-54} -6 q^{-55} -25 q^{-56} -11 q^{-57} +7 q^{-58} +10 q^{-59} +23 q^{-60} +7 q^{-61} -4 q^{-62} -5 q^{-63} -26 q^{-64} -12 q^{-65} +7 q^{-66} +9 q^{-67} +24 q^{-68} +7 q^{-69} -3 q^{-70} -6 q^{-71} -25 q^{-72} -11 q^{-73} +7 q^{-74} +9 q^{-75} +23 q^{-76} +7 q^{-77} -4 q^{-78} -7 q^{-79} -23 q^{-80} -10 q^{-81} +6 q^{-82} +8 q^{-83} +21 q^{-84} +7 q^{-85} -5 q^{-86} -6 q^{-87} -20 q^{-88} -8 q^{-89} +4 q^{-90} +6 q^{-91} +18 q^{-92} +7 q^{-93} -3 q^{-94} -4 q^{-95} -16 q^{-96} -7 q^{-97} +2 q^{-98} +2 q^{-99} +14 q^{-100} +8 q^{-101} - q^{-102} - q^{-103} -12 q^{-104} -6 q^{-105} - q^{-106} -2 q^{-107} +10 q^{-108} +7 q^{-109} + q^{-110} +2 q^{-111} -6 q^{-112} -5 q^{-113} -3 q^{-114} -5 q^{-115} +6 q^{-116} +5 q^{-117} + q^{-118} +5 q^{-119} -2 q^{-120} -2 q^{-121} -3 q^{-122} -6 q^{-123} +2 q^{-124} +2 q^{-125} +4 q^{-127} + q^{-128} + q^{-129} - q^{-130} -5 q^{-131} - q^{-134} +2 q^{-135} + q^{-136} +2 q^{-137} + q^{-138} -2 q^{-139} - q^{-140} - q^{-142} + q^{-145} + q^{-146} - q^{-147} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7],
X[7, 2, 8, 3]]</nowiki></pre></td></tr>
X[7, 2, 8, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[5, 2]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 1, -3, 4, -5, 2, -4, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 2, 6]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 2, 6]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[5, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, {3, 4}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[5, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[5, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[5, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, {3, 4}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[5, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-3 + - + 2 t
-3 + - + 2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[5, 2]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[5, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
1 + 2 z</nowiki></pre></td></tr>
1 + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 2]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 2]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[5, 2]], KnotSignature[Knot[5, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[5, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -4 2 -2 1

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[5, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -4 2 -2 1
-q + q - q + -- - q + -
-q + q - q + -- - q + -
3 q
3 q
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 2], Knot[11, NonAlternating, 57]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 2], Knot[11, NonAlternating, 57]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[5, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -12 -10 -8 -6 -2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[5, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -12 -10 -8 -6 -2
-q - q + q + q + q + q + q</nowiki></pre></td></tr>
-q - q + q + q + q + q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[5, 2]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[5, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2
a + a - a + a z + a z</nowiki></pre></td></tr>
a + a - a + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
5 3 7 3 4 4 6 4
5 3 7 3 4 4 6 4
2 a z + a z + a z + a z</nowiki></pre></td></tr>
2 a z + a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[5, 2]], Vassiliev[3][Knot[5, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[5, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 1 1 1 1 1 1 1

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[5, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 1 1 1 1 1 1 1
q + - + ------ + ----- + ----- + ----- + ----- + ----
q + - + ------ + ----- + ----- + ----- + ----- + ----
q 13 5 9 4 9 3 7 2 5 2 3
q 13 5 9 4 9 3 7 2 5 2 3
q t q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[5, 2], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[5, 2], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 -16 -15 2 -13 2 3 -10 3 4 -7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 -16 -15 2 -13 2 3 -10 3 4 -7
q - q - q + --- - q - --- + --- - q - -- + -- - q -
q - q - q + --- - q - --- + --- - q - -- + -- - q -
14 12 11 9 8
14 12 11 9 8
Line 163: Line 109:
6 5
6 5
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:40, 30 August 2005

5 1.gif

5_1

6 1.gif

6_1

5 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 5 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 2 at Knotilus!

5_2 is also known as the 3-twist knot.


3D depiction
Simple square depiction
Lissajous curve x=cos(2t+0.2), y=cos(3t+0.7), z=cos(7t); 2 crossings can be removed

Knot presentations

Planar diagram presentation X1425 X3849 X5,10,6,1 X9,6,10,7 X7283
Gauss code -1, 5, -2, 1, -3, 4, -5, 2, -4, 3
Dowker-Thistlethwaite code 4 8 10 2 6
Conway Notation [32]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 6, width is 3,

Braid index is 3

5 2 ML.gif 5 2 AP.gif
[{7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 6}, {5, 7}, {6, 1}]

[edit Notes on presentations of 5 2]

Knot 5_2.
A graph, knot 5_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][1]
Hyperbolic Volume 2.82812
A-Polynomial See Data:5 2/A-polynomial

[edit Notes for 5 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 5 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n57,}

Vassiliev invariants

V2 and V3: (2, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 5 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-1     11
-3    110
-5   1  1
-7   1  1
-9 11   0
-11      0
-131     -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials