10 43: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- -->
k = 43 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,8,-9,3,-6,10,-2,4,-5,6,-3,7,-8,9,-7,5,-4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=43|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,8,-9,3,-6,10,-2,4,-5,6,-3,7,-8,9,-7,5,-4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = [[10_91]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[10_91]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
Line 74: Line 38:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-16 q^{11}+34 q^9-41 q^8-12 q^7+77 q^6-65 q^5-37 q^4+120 q^3-74 q^2-63 q+139-63 q^{-1} -74 q^{-2} +120 q^{-3} -37 q^{-4} -65 q^{-5} +77 q^{-6} -12 q^{-7} -41 q^{-8} +34 q^{-9} -16 q^{-11} +9 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+13 q^{25}+3 q^{24}-26 q^{23}-9 q^{22}+48 q^{21}+23 q^{20}-77 q^{19}-55 q^{18}+117 q^{17}+102 q^{16}-153 q^{15}-174 q^{14}+183 q^{13}+265 q^{12}-199 q^{11}-367 q^{10}+193 q^9+474 q^8-175 q^7-562 q^6+129 q^5+645 q^4-90 q^3-679 q^2+20 q+713+20 q^{-1} -679 q^{-2} -90 q^{-3} +645 q^{-4} +129 q^{-5} -562 q^{-6} -175 q^{-7} +474 q^{-8} +193 q^{-9} -367 q^{-10} -199 q^{-11} +265 q^{-12} +183 q^{-13} -174 q^{-14} -153 q^{-15} +102 q^{-16} +117 q^{-17} -55 q^{-18} -77 q^{-19} +23 q^{-20} +48 q^{-21} -9 q^{-22} -26 q^{-23} +3 q^{-24} +13 q^{-25} -2 q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-16 q^{11}+34 q^9-41 q^8-12 q^7+77 q^6-65 q^5-37 q^4+120 q^3-74 q^2-63 q+139-63 q^{-1} -74 q^{-2} +120 q^{-3} -37 q^{-4} -65 q^{-5} +77 q^{-6} -12 q^{-7} -41 q^{-8} +34 q^{-9} -16 q^{-11} +9 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+13 q^{25}+3 q^{24}-26 q^{23}-9 q^{22}+48 q^{21}+23 q^{20}-77 q^{19}-55 q^{18}+117 q^{17}+102 q^{16}-153 q^{15}-174 q^{14}+183 q^{13}+265 q^{12}-199 q^{11}-367 q^{10}+193 q^9+474 q^8-175 q^7-562 q^6+129 q^5+645 q^4-90 q^3-679 q^2+20 q+713+20 q^{-1} -679 q^{-2} -90 q^{-3} +645 q^{-4} +129 q^{-5} -562 q^{-6} -175 q^{-7} +474 q^{-8} +193 q^{-9} -367 q^{-10} -199 q^{-11} +265 q^{-12} +183 q^{-13} -174 q^{-14} -153 q^{-15} +102 q^{-16} +117 q^{-17} -55 q^{-18} -77 q^{-19} +23 q^{-20} +48 q^{-21} -9 q^{-22} -26 q^{-23} +3 q^{-24} +13 q^{-25} -2 q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-16 q^{44}+5 q^{43}+22 q^{42}-12 q^{41}+13 q^{40}-64 q^{39}+13 q^{38}+89 q^{37}-9 q^{36}+23 q^{35}-211 q^{34}-15 q^{33}+242 q^{32}+95 q^{31}+103 q^{30}-539 q^{29}-225 q^{28}+425 q^{27}+420 q^{26}+448 q^{25}-992 q^{24}-781 q^{23}+391 q^{22}+923 q^{21}+1262 q^{20}-1297 q^{19}-1640 q^{18}-100 q^{17}+1336 q^{16}+2463 q^{15}-1193 q^{14}-2480 q^{13}-992 q^{12}+1399 q^{11}+3678 q^{10}-701 q^9-2982 q^8-1951 q^7+1097 q^6+4523 q^5-48 q^4-3036 q^3-2678 q^2+577 q+4821+577 q^{-1} -2678 q^{-2} -3036 q^{-3} -48 q^{-4} +4523 q^{-5} +1097 q^{-6} -1951 q^{-7} -2982 q^{-8} -701 q^{-9} +3678 q^{-10} +1399 q^{-11} -992 q^{-12} -2480 q^{-13} -1193 q^{-14} +2463 q^{-15} +1336 q^{-16} -100 q^{-17} -1640 q^{-18} -1297 q^{-19} +1262 q^{-20} +923 q^{-21} +391 q^{-22} -781 q^{-23} -992 q^{-24} +448 q^{-25} +420 q^{-26} +425 q^{-27} -225 q^{-28} -539 q^{-29} +103 q^{-30} +95 q^{-31} +242 q^{-32} -15 q^{-33} -211 q^{-34} +23 q^{-35} -9 q^{-36} +89 q^{-37} +13 q^{-38} -64 q^{-39} +13 q^{-40} -12 q^{-41} +22 q^{-42} +5 q^{-43} -16 q^{-44} +5 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+8 q^{68}-q^{67}-17 q^{66}+5 q^{65}+13 q^{64}+4 q^{63}+12 q^{62}-18 q^{61}-52 q^{60}-12 q^{59}+63 q^{58}+86 q^{57}+43 q^{56}-83 q^{55}-210 q^{54}-133 q^{53}+136 q^{52}+380 q^{51}+325 q^{50}-121 q^{49}-637 q^{48}-689 q^{47}-25 q^{46}+929 q^{45}+1294 q^{44}+422 q^{43}-1192 q^{42}-2106 q^{41}-1211 q^{40}+1201 q^{39}+3146 q^{38}+2492 q^{37}-841 q^{36}-4191 q^{35}-4256 q^{34}-168 q^{33}+5047 q^{32}+6478 q^{31}+1863 q^{30}-5477 q^{29}-8880 q^{28}-4271 q^{27}+5245 q^{26}+11234 q^{25}+7269 q^{24}-4313 q^{23}-13276 q^{22}-10523 q^{21}+2664 q^{20}+14749 q^{19}+13865 q^{18}-531 q^{17}-15638 q^{16}-16843 q^{15}-1956 q^{14}+15848 q^{13}+19490 q^{12}+4414 q^{11}-15583 q^{10}-21374 q^9-6881 q^8+14811 q^7+22904 q^6+8939 q^5-13816 q^4-23551 q^3-10902 q^2+12396 q+24011+12396 q^{-1} -10902 q^{-2} -23551 q^{-3} -13816 q^{-4} +8939 q^{-5} +22904 q^{-6} +14811 q^{-7} -6881 q^{-8} -21374 q^{-9} -15583 q^{-10} +4414 q^{-11} +19490 q^{-12} +15848 q^{-13} -1956 q^{-14} -16843 q^{-15} -15638 q^{-16} -531 q^{-17} +13865 q^{-18} +14749 q^{-19} +2664 q^{-20} -10523 q^{-21} -13276 q^{-22} -4313 q^{-23} +7269 q^{-24} +11234 q^{-25} +5245 q^{-26} -4271 q^{-27} -8880 q^{-28} -5477 q^{-29} +1863 q^{-30} +6478 q^{-31} +5047 q^{-32} -168 q^{-33} -4256 q^{-34} -4191 q^{-35} -841 q^{-36} +2492 q^{-37} +3146 q^{-38} +1201 q^{-39} -1211 q^{-40} -2106 q^{-41} -1192 q^{-42} +422 q^{-43} +1294 q^{-44} +929 q^{-45} -25 q^{-46} -689 q^{-47} -637 q^{-48} -121 q^{-49} +325 q^{-50} +380 q^{-51} +136 q^{-52} -133 q^{-53} -210 q^{-54} -83 q^{-55} +43 q^{-56} +86 q^{-57} +63 q^{-58} -12 q^{-59} -52 q^{-60} -18 q^{-61} +12 q^{-62} +4 q^{-63} +13 q^{-64} +5 q^{-65} -17 q^{-66} - q^{-67} +8 q^{-68} -2 q^{-69} +3 q^{-71} -4 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-12 q^{97}-4 q^{96}+24 q^{95}-15 q^{94}-7 q^{93}-14 q^{92}+41 q^{91}-19 q^{90}-11 q^{89}+76 q^{88}-50 q^{87}-61 q^{86}-84 q^{85}+114 q^{84}+4 q^{83}+51 q^{82}+267 q^{81}-100 q^{80}-258 q^{79}-428 q^{78}+93 q^{77}+38 q^{76}+368 q^{75}+991 q^{74}+160 q^{73}-589 q^{72}-1486 q^{71}-676 q^{70}-514 q^{69}+927 q^{68}+2996 q^{67}+1953 q^{66}-59 q^{65}-3288 q^{64}-3380 q^{63}-3684 q^{62}+116 q^{61}+6248 q^{60}+7223 q^{59}+4442 q^{58}-3376 q^{57}-7889 q^{56}-12321 q^{55}-6556 q^{54}+7111 q^{53}+15762 q^{52}+16748 q^{51}+4389 q^{50}-9267 q^{49}-25989 q^{48}-23875 q^{47}-2268 q^{46}+21250 q^{45}+35978 q^{44}+25627 q^{43}+1759 q^{42}-36928 q^{41}-50258 q^{40}-27884 q^{39}+13281 q^{38}+52984 q^{37}+57855 q^{36}+30871 q^{35}-33972 q^{34}-75218 q^{33}-65948 q^{32}-13251 q^{31}+56227 q^{30}+89484 q^{29}+72728 q^{28}-12794 q^{27}-87051 q^{26}-103813 q^{25}-51912 q^{24}+42116 q^{23}+108858 q^{22}+114021 q^{21}+19679 q^{20}-82554 q^{19}-129986 q^{18}-89788 q^{17}+17398 q^{16}+112929 q^{15}+143888 q^{14}+51839 q^{13}-67528 q^{12}-141491 q^{11}-117644 q^{10}-8262 q^9+106283 q^8+159774 q^7+76628 q^6-49230 q^5-141787 q^4-134096 q^3-30121 q^2+93967 q+164447+93967 q^{-1} -30121 q^{-2} -134096 q^{-3} -141787 q^{-4} -49230 q^{-5} +76628 q^{-6} +159774 q^{-7} +106283 q^{-8} -8262 q^{-9} -117644 q^{-10} -141491 q^{-11} -67528 q^{-12} +51839 q^{-13} +143888 q^{-14} +112929 q^{-15} +17398 q^{-16} -89788 q^{-17} -129986 q^{-18} -82554 q^{-19} +19679 q^{-20} +114021 q^{-21} +108858 q^{-22} +42116 q^{-23} -51912 q^{-24} -103813 q^{-25} -87051 q^{-26} -12794 q^{-27} +72728 q^{-28} +89484 q^{-29} +56227 q^{-30} -13251 q^{-31} -65948 q^{-32} -75218 q^{-33} -33972 q^{-34} +30871 q^{-35} +57855 q^{-36} +52984 q^{-37} +13281 q^{-38} -27884 q^{-39} -50258 q^{-40} -36928 q^{-41} +1759 q^{-42} +25627 q^{-43} +35978 q^{-44} +21250 q^{-45} -2268 q^{-46} -23875 q^{-47} -25989 q^{-48} -9267 q^{-49} +4389 q^{-50} +16748 q^{-51} +15762 q^{-52} +7111 q^{-53} -6556 q^{-54} -12321 q^{-55} -7889 q^{-56} -3376 q^{-57} +4442 q^{-58} +7223 q^{-59} +6248 q^{-60} +116 q^{-61} -3684 q^{-62} -3380 q^{-63} -3288 q^{-64} -59 q^{-65} +1953 q^{-66} +2996 q^{-67} +927 q^{-68} -514 q^{-69} -676 q^{-70} -1486 q^{-71} -589 q^{-72} +160 q^{-73} +991 q^{-74} +368 q^{-75} +38 q^{-76} +93 q^{-77} -428 q^{-78} -258 q^{-79} -100 q^{-80} +267 q^{-81} +51 q^{-82} +4 q^{-83} +114 q^{-84} -84 q^{-85} -61 q^{-86} -50 q^{-87} +76 q^{-88} -11 q^{-89} -19 q^{-90} +41 q^{-91} -14 q^{-92} -7 q^{-93} -15 q^{-94} +24 q^{-95} -4 q^{-96} -12 q^{-97} +10 q^{-98} -3 q^{-99} -3 q^{-101} +4 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+17 q^{131}-3 q^{130}-14 q^{129}+9 q^{128}+q^{127}+15 q^{126}-19 q^{125}-42 q^{124}+45 q^{123}+2 q^{122}-18 q^{121}+39 q^{120}+10 q^{119}+68 q^{118}-50 q^{117}-174 q^{116}+9 q^{115}-34 q^{114}+6 q^{113}+194 q^{112}+134 q^{111}+298 q^{110}-q^{109}-519 q^{108}-358 q^{107}-485 q^{106}-150 q^{105}+575 q^{104}+764 q^{103}+1339 q^{102}+731 q^{101}-838 q^{100}-1515 q^{99}-2494 q^{98}-1887 q^{97}+377 q^{96}+2138 q^{95}+4694 q^{94}+4538 q^{93}+1095 q^{92}-2545 q^{91}-7574 q^{90}-8898 q^{89}-4904 q^{88}+1197 q^{87}+10644 q^{86}+15725 q^{85}+12419 q^{84}+3589 q^{83}-12443 q^{82}-24513 q^{81}-24767 q^{80}-14354 q^{79}+9976 q^{78}+33315 q^{77}+42490 q^{76}+34050 q^{75}+732 q^{74}-38952 q^{73}-64124 q^{72}-63964 q^{71}-24136 q^{70}+35372 q^{69}+85468 q^{68}+104309 q^{67}+64412 q^{66}-16391 q^{65}-100501 q^{64}-151269 q^{63}-122458 q^{62}-24335 q^{61}+100193 q^{60}+197990 q^{59}+196910 q^{58}+90766 q^{57}-76908 q^{56}-235459 q^{55}-280827 q^{54}-182208 q^{53}+23931 q^{52}+253063 q^{51}+364974 q^{50}+294335 q^{49}+60477 q^{48}-243117 q^{47}-438222 q^{46}-417385 q^{45}-172982 q^{44}+200777 q^{43}+490054 q^{42}+540163 q^{41}+306167 q^{40}-127016 q^{39}-514316 q^{38}-651051 q^{37}-448164 q^{36}+27622 q^{35}+507971 q^{34}+740849 q^{33}+587933 q^{32}+88256 q^{31}-474510 q^{30}-804621 q^{29}-714236 q^{28}-209726 q^{27}+419379 q^{26}+841558 q^{25}+820830 q^{24}+326836 q^{23}-351732 q^{22}-854440 q^{21}-903552 q^{20}-432404 q^{19}+278527 q^{18}+848945 q^{17}+964114 q^{16}+521787 q^{15}-207664 q^{14}-830347 q^{13}-1003675 q^{12}-594982 q^{11}+140939 q^{10}+804347 q^9+1028826 q^8+653107 q^7-81995 q^6-773486 q^5-1040657 q^4-700076 q^3+26108 q^2+739188 q+1045555+739188 q^{-1} +26108 q^{-2} -700076 q^{-3} -1040657 q^{-4} -773486 q^{-5} -81995 q^{-6} +653107 q^{-7} +1028826 q^{-8} +804347 q^{-9} +140939 q^{-10} -594982 q^{-11} -1003675 q^{-12} -830347 q^{-13} -207664 q^{-14} +521787 q^{-15} +964114 q^{-16} +848945 q^{-17} +278527 q^{-18} -432404 q^{-19} -903552 q^{-20} -854440 q^{-21} -351732 q^{-22} +326836 q^{-23} +820830 q^{-24} +841558 q^{-25} +419379 q^{-26} -209726 q^{-27} -714236 q^{-28} -804621 q^{-29} -474510 q^{-30} +88256 q^{-31} +587933 q^{-32} +740849 q^{-33} +507971 q^{-34} +27622 q^{-35} -448164 q^{-36} -651051 q^{-37} -514316 q^{-38} -127016 q^{-39} +306167 q^{-40} +540163 q^{-41} +490054 q^{-42} +200777 q^{-43} -172982 q^{-44} -417385 q^{-45} -438222 q^{-46} -243117 q^{-47} +60477 q^{-48} +294335 q^{-49} +364974 q^{-50} +253063 q^{-51} +23931 q^{-52} -182208 q^{-53} -280827 q^{-54} -235459 q^{-55} -76908 q^{-56} +90766 q^{-57} +196910 q^{-58} +197990 q^{-59} +100193 q^{-60} -24335 q^{-61} -122458 q^{-62} -151269 q^{-63} -100501 q^{-64} -16391 q^{-65} +64412 q^{-66} +104309 q^{-67} +85468 q^{-68} +35372 q^{-69} -24136 q^{-70} -63964 q^{-71} -64124 q^{-72} -38952 q^{-73} +732 q^{-74} +34050 q^{-75} +42490 q^{-76} +33315 q^{-77} +9976 q^{-78} -14354 q^{-79} -24767 q^{-80} -24513 q^{-81} -12443 q^{-82} +3589 q^{-83} +12419 q^{-84} +15725 q^{-85} +10644 q^{-86} +1197 q^{-87} -4904 q^{-88} -8898 q^{-89} -7574 q^{-90} -2545 q^{-91} +1095 q^{-92} +4538 q^{-93} +4694 q^{-94} +2138 q^{-95} +377 q^{-96} -1887 q^{-97} -2494 q^{-98} -1515 q^{-99} -838 q^{-100} +731 q^{-101} +1339 q^{-102} +764 q^{-103} +575 q^{-104} -150 q^{-105} -485 q^{-106} -358 q^{-107} -519 q^{-108} - q^{-109} +298 q^{-110} +134 q^{-111} +194 q^{-112} +6 q^{-113} -34 q^{-114} +9 q^{-115} -174 q^{-116} -50 q^{-117} +68 q^{-118} +10 q^{-119} +39 q^{-120} -18 q^{-121} +2 q^{-122} +45 q^{-123} -42 q^{-124} -19 q^{-125} +15 q^{-126} + q^{-127} +9 q^{-128} -14 q^{-129} -3 q^{-130} +17 q^{-131} -6 q^{-132} -5 q^{-133} +3 q^{-134} +3 q^{-136} -4 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-16 q^{44}+5 q^{43}+22 q^{42}-12 q^{41}+13 q^{40}-64 q^{39}+13 q^{38}+89 q^{37}-9 q^{36}+23 q^{35}-211 q^{34}-15 q^{33}+242 q^{32}+95 q^{31}+103 q^{30}-539 q^{29}-225 q^{28}+425 q^{27}+420 q^{26}+448 q^{25}-992 q^{24}-781 q^{23}+391 q^{22}+923 q^{21}+1262 q^{20}-1297 q^{19}-1640 q^{18}-100 q^{17}+1336 q^{16}+2463 q^{15}-1193 q^{14}-2480 q^{13}-992 q^{12}+1399 q^{11}+3678 q^{10}-701 q^9-2982 q^8-1951 q^7+1097 q^6+4523 q^5-48 q^4-3036 q^3-2678 q^2+577 q+4821+577 q^{-1} -2678 q^{-2} -3036 q^{-3} -48 q^{-4} +4523 q^{-5} +1097 q^{-6} -1951 q^{-7} -2982 q^{-8} -701 q^{-9} +3678 q^{-10} +1399 q^{-11} -992 q^{-12} -2480 q^{-13} -1193 q^{-14} +2463 q^{-15} +1336 q^{-16} -100 q^{-17} -1640 q^{-18} -1297 q^{-19} +1262 q^{-20} +923 q^{-21} +391 q^{-22} -781 q^{-23} -992 q^{-24} +448 q^{-25} +420 q^{-26} +425 q^{-27} -225 q^{-28} -539 q^{-29} +103 q^{-30} +95 q^{-31} +242 q^{-32} -15 q^{-33} -211 q^{-34} +23 q^{-35} -9 q^{-36} +89 q^{-37} +13 q^{-38} -64 q^{-39} +13 q^{-40} -12 q^{-41} +22 q^{-42} +5 q^{-43} -16 q^{-44} +5 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+8 q^{68}-q^{67}-17 q^{66}+5 q^{65}+13 q^{64}+4 q^{63}+12 q^{62}-18 q^{61}-52 q^{60}-12 q^{59}+63 q^{58}+86 q^{57}+43 q^{56}-83 q^{55}-210 q^{54}-133 q^{53}+136 q^{52}+380 q^{51}+325 q^{50}-121 q^{49}-637 q^{48}-689 q^{47}-25 q^{46}+929 q^{45}+1294 q^{44}+422 q^{43}-1192 q^{42}-2106 q^{41}-1211 q^{40}+1201 q^{39}+3146 q^{38}+2492 q^{37}-841 q^{36}-4191 q^{35}-4256 q^{34}-168 q^{33}+5047 q^{32}+6478 q^{31}+1863 q^{30}-5477 q^{29}-8880 q^{28}-4271 q^{27}+5245 q^{26}+11234 q^{25}+7269 q^{24}-4313 q^{23}-13276 q^{22}-10523 q^{21}+2664 q^{20}+14749 q^{19}+13865 q^{18}-531 q^{17}-15638 q^{16}-16843 q^{15}-1956 q^{14}+15848 q^{13}+19490 q^{12}+4414 q^{11}-15583 q^{10}-21374 q^9-6881 q^8+14811 q^7+22904 q^6+8939 q^5-13816 q^4-23551 q^3-10902 q^2+12396 q+24011+12396 q^{-1} -10902 q^{-2} -23551 q^{-3} -13816 q^{-4} +8939 q^{-5} +22904 q^{-6} +14811 q^{-7} -6881 q^{-8} -21374 q^{-9} -15583 q^{-10} +4414 q^{-11} +19490 q^{-12} +15848 q^{-13} -1956 q^{-14} -16843 q^{-15} -15638 q^{-16} -531 q^{-17} +13865 q^{-18} +14749 q^{-19} +2664 q^{-20} -10523 q^{-21} -13276 q^{-22} -4313 q^{-23} +7269 q^{-24} +11234 q^{-25} +5245 q^{-26} -4271 q^{-27} -8880 q^{-28} -5477 q^{-29} +1863 q^{-30} +6478 q^{-31} +5047 q^{-32} -168 q^{-33} -4256 q^{-34} -4191 q^{-35} -841 q^{-36} +2492 q^{-37} +3146 q^{-38} +1201 q^{-39} -1211 q^{-40} -2106 q^{-41} -1192 q^{-42} +422 q^{-43} +1294 q^{-44} +929 q^{-45} -25 q^{-46} -689 q^{-47} -637 q^{-48} -121 q^{-49} +325 q^{-50} +380 q^{-51} +136 q^{-52} -133 q^{-53} -210 q^{-54} -83 q^{-55} +43 q^{-56} +86 q^{-57} +63 q^{-58} -12 q^{-59} -52 q^{-60} -18 q^{-61} +12 q^{-62} +4 q^{-63} +13 q^{-64} +5 q^{-65} -17 q^{-66} - q^{-67} +8 q^{-68} -2 q^{-69} +3 q^{-71} -4 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-12 q^{97}-4 q^{96}+24 q^{95}-15 q^{94}-7 q^{93}-14 q^{92}+41 q^{91}-19 q^{90}-11 q^{89}+76 q^{88}-50 q^{87}-61 q^{86}-84 q^{85}+114 q^{84}+4 q^{83}+51 q^{82}+267 q^{81}-100 q^{80}-258 q^{79}-428 q^{78}+93 q^{77}+38 q^{76}+368 q^{75}+991 q^{74}+160 q^{73}-589 q^{72}-1486 q^{71}-676 q^{70}-514 q^{69}+927 q^{68}+2996 q^{67}+1953 q^{66}-59 q^{65}-3288 q^{64}-3380 q^{63}-3684 q^{62}+116 q^{61}+6248 q^{60}+7223 q^{59}+4442 q^{58}-3376 q^{57}-7889 q^{56}-12321 q^{55}-6556 q^{54}+7111 q^{53}+15762 q^{52}+16748 q^{51}+4389 q^{50}-9267 q^{49}-25989 q^{48}-23875 q^{47}-2268 q^{46}+21250 q^{45}+35978 q^{44}+25627 q^{43}+1759 q^{42}-36928 q^{41}-50258 q^{40}-27884 q^{39}+13281 q^{38}+52984 q^{37}+57855 q^{36}+30871 q^{35}-33972 q^{34}-75218 q^{33}-65948 q^{32}-13251 q^{31}+56227 q^{30}+89484 q^{29}+72728 q^{28}-12794 q^{27}-87051 q^{26}-103813 q^{25}-51912 q^{24}+42116 q^{23}+108858 q^{22}+114021 q^{21}+19679 q^{20}-82554 q^{19}-129986 q^{18}-89788 q^{17}+17398 q^{16}+112929 q^{15}+143888 q^{14}+51839 q^{13}-67528 q^{12}-141491 q^{11}-117644 q^{10}-8262 q^9+106283 q^8+159774 q^7+76628 q^6-49230 q^5-141787 q^4-134096 q^3-30121 q^2+93967 q+164447+93967 q^{-1} -30121 q^{-2} -134096 q^{-3} -141787 q^{-4} -49230 q^{-5} +76628 q^{-6} +159774 q^{-7} +106283 q^{-8} -8262 q^{-9} -117644 q^{-10} -141491 q^{-11} -67528 q^{-12} +51839 q^{-13} +143888 q^{-14} +112929 q^{-15} +17398 q^{-16} -89788 q^{-17} -129986 q^{-18} -82554 q^{-19} +19679 q^{-20} +114021 q^{-21} +108858 q^{-22} +42116 q^{-23} -51912 q^{-24} -103813 q^{-25} -87051 q^{-26} -12794 q^{-27} +72728 q^{-28} +89484 q^{-29} +56227 q^{-30} -13251 q^{-31} -65948 q^{-32} -75218 q^{-33} -33972 q^{-34} +30871 q^{-35} +57855 q^{-36} +52984 q^{-37} +13281 q^{-38} -27884 q^{-39} -50258 q^{-40} -36928 q^{-41} +1759 q^{-42} +25627 q^{-43} +35978 q^{-44} +21250 q^{-45} -2268 q^{-46} -23875 q^{-47} -25989 q^{-48} -9267 q^{-49} +4389 q^{-50} +16748 q^{-51} +15762 q^{-52} +7111 q^{-53} -6556 q^{-54} -12321 q^{-55} -7889 q^{-56} -3376 q^{-57} +4442 q^{-58} +7223 q^{-59} +6248 q^{-60} +116 q^{-61} -3684 q^{-62} -3380 q^{-63} -3288 q^{-64} -59 q^{-65} +1953 q^{-66} +2996 q^{-67} +927 q^{-68} -514 q^{-69} -676 q^{-70} -1486 q^{-71} -589 q^{-72} +160 q^{-73} +991 q^{-74} +368 q^{-75} +38 q^{-76} +93 q^{-77} -428 q^{-78} -258 q^{-79} -100 q^{-80} +267 q^{-81} +51 q^{-82} +4 q^{-83} +114 q^{-84} -84 q^{-85} -61 q^{-86} -50 q^{-87} +76 q^{-88} -11 q^{-89} -19 q^{-90} +41 q^{-91} -14 q^{-92} -7 q^{-93} -15 q^{-94} +24 q^{-95} -4 q^{-96} -12 q^{-97} +10 q^{-98} -3 q^{-99} -3 q^{-101} +4 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+17 q^{131}-3 q^{130}-14 q^{129}+9 q^{128}+q^{127}+15 q^{126}-19 q^{125}-42 q^{124}+45 q^{123}+2 q^{122}-18 q^{121}+39 q^{120}+10 q^{119}+68 q^{118}-50 q^{117}-174 q^{116}+9 q^{115}-34 q^{114}+6 q^{113}+194 q^{112}+134 q^{111}+298 q^{110}-q^{109}-519 q^{108}-358 q^{107}-485 q^{106}-150 q^{105}+575 q^{104}+764 q^{103}+1339 q^{102}+731 q^{101}-838 q^{100}-1515 q^{99}-2494 q^{98}-1887 q^{97}+377 q^{96}+2138 q^{95}+4694 q^{94}+4538 q^{93}+1095 q^{92}-2545 q^{91}-7574 q^{90}-8898 q^{89}-4904 q^{88}+1197 q^{87}+10644 q^{86}+15725 q^{85}+12419 q^{84}+3589 q^{83}-12443 q^{82}-24513 q^{81}-24767 q^{80}-14354 q^{79}+9976 q^{78}+33315 q^{77}+42490 q^{76}+34050 q^{75}+732 q^{74}-38952 q^{73}-64124 q^{72}-63964 q^{71}-24136 q^{70}+35372 q^{69}+85468 q^{68}+104309 q^{67}+64412 q^{66}-16391 q^{65}-100501 q^{64}-151269 q^{63}-122458 q^{62}-24335 q^{61}+100193 q^{60}+197990 q^{59}+196910 q^{58}+90766 q^{57}-76908 q^{56}-235459 q^{55}-280827 q^{54}-182208 q^{53}+23931 q^{52}+253063 q^{51}+364974 q^{50}+294335 q^{49}+60477 q^{48}-243117 q^{47}-438222 q^{46}-417385 q^{45}-172982 q^{44}+200777 q^{43}+490054 q^{42}+540163 q^{41}+306167 q^{40}-127016 q^{39}-514316 q^{38}-651051 q^{37}-448164 q^{36}+27622 q^{35}+507971 q^{34}+740849 q^{33}+587933 q^{32}+88256 q^{31}-474510 q^{30}-804621 q^{29}-714236 q^{28}-209726 q^{27}+419379 q^{26}+841558 q^{25}+820830 q^{24}+326836 q^{23}-351732 q^{22}-854440 q^{21}-903552 q^{20}-432404 q^{19}+278527 q^{18}+848945 q^{17}+964114 q^{16}+521787 q^{15}-207664 q^{14}-830347 q^{13}-1003675 q^{12}-594982 q^{11}+140939 q^{10}+804347 q^9+1028826 q^8+653107 q^7-81995 q^6-773486 q^5-1040657 q^4-700076 q^3+26108 q^2+739188 q+1045555+739188 q^{-1} +26108 q^{-2} -700076 q^{-3} -1040657 q^{-4} -773486 q^{-5} -81995 q^{-6} +653107 q^{-7} +1028826 q^{-8} +804347 q^{-9} +140939 q^{-10} -594982 q^{-11} -1003675 q^{-12} -830347 q^{-13} -207664 q^{-14} +521787 q^{-15} +964114 q^{-16} +848945 q^{-17} +278527 q^{-18} -432404 q^{-19} -903552 q^{-20} -854440 q^{-21} -351732 q^{-22} +326836 q^{-23} +820830 q^{-24} +841558 q^{-25} +419379 q^{-26} -209726 q^{-27} -714236 q^{-28} -804621 q^{-29} -474510 q^{-30} +88256 q^{-31} +587933 q^{-32} +740849 q^{-33} +507971 q^{-34} +27622 q^{-35} -448164 q^{-36} -651051 q^{-37} -514316 q^{-38} -127016 q^{-39} +306167 q^{-40} +540163 q^{-41} +490054 q^{-42} +200777 q^{-43} -172982 q^{-44} -417385 q^{-45} -438222 q^{-46} -243117 q^{-47} +60477 q^{-48} +294335 q^{-49} +364974 q^{-50} +253063 q^{-51} +23931 q^{-52} -182208 q^{-53} -280827 q^{-54} -235459 q^{-55} -76908 q^{-56} +90766 q^{-57} +196910 q^{-58} +197990 q^{-59} +100193 q^{-60} -24335 q^{-61} -122458 q^{-62} -151269 q^{-63} -100501 q^{-64} -16391 q^{-65} +64412 q^{-66} +104309 q^{-67} +85468 q^{-68} +35372 q^{-69} -24136 q^{-70} -63964 q^{-71} -64124 q^{-72} -38952 q^{-73} +732 q^{-74} +34050 q^{-75} +42490 q^{-76} +33315 q^{-77} +9976 q^{-78} -14354 q^{-79} -24767 q^{-80} -24513 q^{-81} -12443 q^{-82} +3589 q^{-83} +12419 q^{-84} +15725 q^{-85} +10644 q^{-86} +1197 q^{-87} -4904 q^{-88} -8898 q^{-89} -7574 q^{-90} -2545 q^{-91} +1095 q^{-92} +4538 q^{-93} +4694 q^{-94} +2138 q^{-95} +377 q^{-96} -1887 q^{-97} -2494 q^{-98} -1515 q^{-99} -838 q^{-100} +731 q^{-101} +1339 q^{-102} +764 q^{-103} +575 q^{-104} -150 q^{-105} -485 q^{-106} -358 q^{-107} -519 q^{-108} - q^{-109} +298 q^{-110} +134 q^{-111} +194 q^{-112} +6 q^{-113} -34 q^{-114} +9 q^{-115} -174 q^{-116} -50 q^{-117} +68 q^{-118} +10 q^{-119} +39 q^{-120} -18 q^{-121} +2 q^{-122} +45 q^{-123} -42 q^{-124} -19 q^{-125} +15 q^{-126} + q^{-127} +9 q^{-128} -14 q^{-129} -3 q^{-130} +17 q^{-131} -6 q^{-132} -5 q^{-133} +3 q^{-134} +3 q^{-136} -4 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[20, 11, 1, 12],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[20, 11, 1, 12],
X[12, 19, 13, 20], X[8, 14, 9, 13], X[18, 15, 19, 16],
X[12, 19, 13, 20], X[8, 14, 9, 13], X[18, 15, 19, 16],
X[16, 5, 17, 6], X[6, 17, 7, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr>
X[16, 5, 17, 6], X[6, 17, 7, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 43]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9,
-7, 5, -4]</nowiki></pre></td></tr>
-7, 5, -4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 43]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 14, 2, 20, 8, 18, 6, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 14, 2, 20, 8, 18, 6, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 4, -3, 4, 4}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 4, -3, 4, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 43]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 43]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_43_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 43]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 43]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 43]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 43]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_43_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 43]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 43]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3
23 - t + -- - -- - 17 t + 7 t - t
23 - t + -- - -- - 17 t + 7 t - t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 43]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 43]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + 2 z + z - z</nowiki></pre></td></tr>
1 + 2 z + z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 43]], KnotSignature[Knot[10, 43]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{73, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 43]], KnotSignature[Knot[10, 43]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 43]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{73, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 6 9 11 2 3 4 5

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 43]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 6 9 11 2 3 4 5
13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q
13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43], Knot[10, 91]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43], Knot[10, 91]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 43]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 2 2 -4 3 2 4 8 10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 43]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 2 2 -4 3 2 4 8 10
-1 - q + q - --- + -- - q + -- + 3 q - q + 2 q - 2 q +
-1 - q + q - --- + -- - q + -- + 3 q - q + 2 q - 2 q +
10 8 2
10 8 2
Line 149: Line 100:
12 16
12 16
q - q</nowiki></pre></td></tr>
q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 43]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 43]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-4 2 2 4 2 z 4 z 2 2 4 2 4
-4 2 2 4 2 z 4 z 2 2 4 2 4
-1 - a + -- + 2 a - a - 4 z - -- + ---- + 4 a z - a z - 3 z +
-1 - a + -- + 2 a - a - 4 z - -- + ---- + 4 a z - a z - 3 z +
Line 162: Line 112:
2
2
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 43]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 43]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-4 2 2 4 z 3 z 5 2 3 z
-4 2 2 4 z 3 z 5 2 3 z
-1 - a - -- - 2 a - a + -- - --- - 3 a z + a z + 8 z + ---- +
-1 - a - -- - 2 a - a + -- - --- - 3 a z + a z + 8 z + ---- +
Line 193: Line 142:
a 2 a
a 2 a
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 43]], Vassiliev[3][Knot[10, 43]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 43]], Vassiliev[3][Knot[10, 43]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 43]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 5 4

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 43]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 5 4
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 210: Line 157:
7 4 9 4 11 5
7 4 9 4 11 5
q t + 2 q t + q t</nowiki></pre></td></tr>
q t + 2 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 43], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 43], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 -13 9 16 34 41 12 77 65 37
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 -13 9 16 34 41 12 77 65 37
139 + q - --- + q + --- - --- + -- - -- - -- + -- - -- - -- +
139 + q - --- + q + --- - --- + -- - -- - -- + -- - -- - -- +
14 12 11 9 8 7 6 5 4
14 12 11 9 8 7 6 5 4
Line 224: Line 170:
7 8 9 11 12 13 14 15
7 8 9 11 12 13 14 15
12 q - 41 q + 34 q - 16 q + 9 q + q - 3 q + q</nowiki></pre></td></tr>
12 q - 41 q + 34 q - 16 q + 9 q + q - 3 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:40, 30 August 2005

10 42.gif

10_42

10 44.gif

10_44

10 43.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 43's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 43 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,8,15,7 X20,11,1,12 X12,19,13,20 X8,14,9,13 X18,15,19,16 X16,5,17,6 X6,17,7,18 X2,10,3,9
Gauss code 1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9, -7, 5, -4
Dowker-Thistlethwaite code 4 10 16 14 2 20 8 18 6 12
Conway Notation [212212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

10 43 ML.gif 10 43 AP.gif
[{3, 11}, {2, 9}, {8, 10}, {9, 4}, {1, 3}, {5, 2}, {4, 7}, {6, 8}, {7, 12}, {11, 5}, {12, 6}, {10, 1}]

[edit Notes on presentations of 10 43]


Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 12.6026
A-Polynomial See Data:10 43/A-polynomial

[edit Notes for 10 43's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 43's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 73, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {10_91,}

Vassiliev invariants

V2 and V3: (2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         2 2
7        41 -3
5       52  3
3      64   -2
1     75    2
-1    57     2
-3   46      -2
-5  25       3
-7 14        -3
-9 2         2
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials