10 119: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- -->
k = 119 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,8,-5,1,-2,3,-6,7,-8,10,-9,5,-7,6,-4,2,-10,9/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=119|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,8,-5,1,-2,3,-6,7,-8,10,-9,5,-7,6,-4,2,-10,9/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = [[K11a84]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11a84]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
Line 73: Line 37:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{18}-4 q^{17}+2 q^{16}+15 q^{15}-26 q^{14}-9 q^{13}+67 q^{12}-54 q^{11}-61 q^{10}+146 q^9-54 q^8-144 q^7+206 q^6-21 q^5-214 q^4+216 q^3+26 q^2-232 q+173+59 q^{-1} -185 q^{-2} +97 q^{-3} +56 q^{-4} -99 q^{-5} +34 q^{-6} +27 q^{-7} -30 q^{-8} +7 q^{-9} +5 q^{-10} -4 q^{-11} + q^{-12} </math> |

coloured_jones_3 = <math>q^{36}-4 q^{35}+2 q^{34}+9 q^{33}+q^{32}-29 q^{31}-15 q^{30}+67 q^{29}+55 q^{28}-105 q^{27}-152 q^{26}+128 q^{25}+304 q^{24}-95 q^{23}-495 q^{22}-27 q^{21}+690 q^{20}+243 q^{19}-843 q^{18}-534 q^{17}+920 q^{16}+861 q^{15}-901 q^{14}-1196 q^{13}+816 q^{12}+1476 q^{11}-648 q^{10}-1721 q^9+458 q^8+1881 q^7-232 q^6-1971 q^5+5 q^4+1962 q^3+229 q^2-1864 q-427+1654 q^{-1} +584 q^{-2} -1370 q^{-3} -653 q^{-4} +1028 q^{-5} +645 q^{-6} -701 q^{-7} -547 q^{-8} +417 q^{-9} +414 q^{-10} -227 q^{-11} -261 q^{-12} +100 q^{-13} +151 q^{-14} -45 q^{-15} -74 q^{-16} +23 q^{-17} +28 q^{-18} -9 q^{-19} -10 q^{-20} +3 q^{-21} +5 q^{-22} -4 q^{-23} + q^{-24} </math> |
{{Display Coloured Jones|J2=<math>q^{18}-4 q^{17}+2 q^{16}+15 q^{15}-26 q^{14}-9 q^{13}+67 q^{12}-54 q^{11}-61 q^{10}+146 q^9-54 q^8-144 q^7+206 q^6-21 q^5-214 q^4+216 q^3+26 q^2-232 q+173+59 q^{-1} -185 q^{-2} +97 q^{-3} +56 q^{-4} -99 q^{-5} +34 q^{-6} +27 q^{-7} -30 q^{-8} +7 q^{-9} +5 q^{-10} -4 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-4 q^{35}+2 q^{34}+9 q^{33}+q^{32}-29 q^{31}-15 q^{30}+67 q^{29}+55 q^{28}-105 q^{27}-152 q^{26}+128 q^{25}+304 q^{24}-95 q^{23}-495 q^{22}-27 q^{21}+690 q^{20}+243 q^{19}-843 q^{18}-534 q^{17}+920 q^{16}+861 q^{15}-901 q^{14}-1196 q^{13}+816 q^{12}+1476 q^{11}-648 q^{10}-1721 q^9+458 q^8+1881 q^7-232 q^6-1971 q^5+5 q^4+1962 q^3+229 q^2-1864 q-427+1654 q^{-1} +584 q^{-2} -1370 q^{-3} -653 q^{-4} +1028 q^{-5} +645 q^{-6} -701 q^{-7} -547 q^{-8} +417 q^{-9} +414 q^{-10} -227 q^{-11} -261 q^{-12} +100 q^{-13} +151 q^{-14} -45 q^{-15} -74 q^{-16} +23 q^{-17} +28 q^{-18} -9 q^{-19} -10 q^{-20} +3 q^{-21} +5 q^{-22} -4 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-4 q^{59}+2 q^{58}+9 q^{57}-5 q^{56}-2 q^{55}-35 q^{54}+9 q^{53}+78 q^{52}+24 q^{51}-2 q^{50}-234 q^{49}-123 q^{48}+256 q^{47}+344 q^{46}+343 q^{45}-653 q^{44}-912 q^{43}-60 q^{42}+923 q^{41}+1908 q^{40}-284 q^{39}-2244 q^{38}-2063 q^{37}+229 q^{36}+4410 q^{35}+2383 q^{34}-2044 q^{33}-5254 q^{32}-3503 q^{31}+5323 q^{30}+6610 q^{29}+1610 q^{28}-6835 q^{27}-9280 q^{26}+2669 q^{25}+9461 q^{24}+7637 q^{23}-4976 q^{22}-14134 q^{21}-2500 q^{20}+9273 q^{19}+13279 q^{18}-726 q^{17}-16431 q^{16}-7818 q^{15}+6885 q^{14}+17045 q^{13}+3954 q^{12}-16512 q^{11}-12057 q^{10}+3581 q^9+18858 q^8+8212 q^7-14791 q^6-14952 q^5-359 q^4+18417 q^3+11734 q^2-10923 q-15659-4667 q^{-1} +14854 q^{-2} +13309 q^{-3} -5243 q^{-4} -12982 q^{-5} -7653 q^{-6} +8713 q^{-7} +11442 q^{-8} -153 q^{-9} -7596 q^{-10} -7376 q^{-11} +2925 q^{-12} +6895 q^{-13} +1895 q^{-14} -2602 q^{-15} -4508 q^{-16} +81 q^{-17} +2698 q^{-18} +1345 q^{-19} -242 q^{-20} -1752 q^{-21} -309 q^{-22} +666 q^{-23} +403 q^{-24} +151 q^{-25} -454 q^{-26} -84 q^{-27} +124 q^{-28} +38 q^{-29} +63 q^{-30} -91 q^{-31} -2 q^{-32} +27 q^{-33} -8 q^{-34} +11 q^{-35} -14 q^{-36} +3 q^{-37} +5 q^{-38} -4 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-4 q^{89}+2 q^{88}+9 q^{87}-5 q^{86}-8 q^{85}-8 q^{84}-11 q^{83}+20 q^{82}+71 q^{81}+29 q^{80}-74 q^{79}-149 q^{78}-157 q^{77}+43 q^{76}+386 q^{75}+535 q^{74}+142 q^{73}-629 q^{72}-1233 q^{71}-964 q^{70}+508 q^{69}+2323 q^{68}+2741 q^{67}+615 q^{66}-3068 q^{65}-5523 q^{64}-3818 q^{63}+2301 q^{62}+8706 q^{61}+9376 q^{60}+1607 q^{59}-10271 q^{58}-16735 q^{57}-10010 q^{56}+7863 q^{55}+23717 q^{54}+22560 q^{53}+908 q^{52}-26863 q^{51}-37290 q^{50}-16878 q^{49}+22875 q^{48}+50391 q^{47}+38553 q^{46}-9576 q^{45}-57548 q^{44}-62501 q^{43}-12860 q^{42}+55504 q^{41}+84185 q^{40}+41841 q^{39}-43024 q^{38}-99477 q^{37}-73282 q^{36}+21200 q^{35}+105906 q^{34}+103113 q^{33}+6837 q^{32}-103332 q^{31}-127723 q^{30}-37512 q^{29}+92962 q^{28}+146068 q^{27}+67383 q^{26}-77858 q^{25}-157705 q^{24}-94208 q^{23}+60130 q^{22}+164281 q^{21}+117290 q^{20}-42344 q^{19}-166996 q^{18}-136672 q^{17}+24919 q^{16}+167338 q^{15}+153331 q^{14}-8048 q^{13}-165525 q^{12}-167906 q^{11}-9396 q^{10}+161160 q^9+180507 q^8+28179 q^7-152563 q^6-190371 q^5-48880 q^4+138440 q^3+195494 q^2+70496 q-117398-193539 q^{-1} -91167 q^{-2} +90096 q^{-3} +182525 q^{-4} +107326 q^{-5} -58453 q^{-6} -161747 q^{-7} -115969 q^{-8} +26501 q^{-9} +132782 q^{-10} +114703 q^{-11} +1431 q^{-12} -99257 q^{-13} -103670 q^{-14} -21353 q^{-15} +65902 q^{-16} +85046 q^{-17} +31853 q^{-18} -37406 q^{-19} -63145 q^{-20} -33162 q^{-21} +16513 q^{-22} +41826 q^{-23} +28465 q^{-24} -3794 q^{-25} -24745 q^{-26} -20758 q^{-27} -2018 q^{-28} +12681 q^{-29} +13217 q^{-30} +3546 q^{-31} -5625 q^{-32} -7396 q^{-33} -2904 q^{-34} +2103 q^{-35} +3599 q^{-36} +1790 q^{-37} -611 q^{-38} -1566 q^{-39} -928 q^{-40} +176 q^{-41} +615 q^{-42} +361 q^{-43} -45 q^{-44} -198 q^{-45} -133 q^{-46} - q^{-47} +96 q^{-48} +34 q^{-49} -33 q^{-50} -9 q^{-51} +2 q^{-52} -9 q^{-53} +12 q^{-54} +7 q^{-55} -14 q^{-56} +3 q^{-57} +5 q^{-58} -4 q^{-59} + q^{-60} </math>|J6=<math>q^{126}-4 q^{125}+2 q^{124}+9 q^{123}-5 q^{122}-8 q^{121}-14 q^{120}+16 q^{119}+13 q^{117}+76 q^{116}-19 q^{115}-87 q^{114}-173 q^{113}-37 q^{112}+32 q^{111}+212 q^{110}+597 q^{109}+324 q^{108}-193 q^{107}-1077 q^{106}-1170 q^{105}-1074 q^{104}+156 q^{103}+2687 q^{102}+3644 q^{101}+2879 q^{100}-1066 q^{99}-4766 q^{98}-8642 q^{97}-7628 q^{96}+740 q^{95}+10641 q^{94}+18227 q^{93}+14755 q^{92}+3147 q^{91}-19152 q^{90}-35574 q^{89}-31743 q^{88}-7345 q^{87}+31458 q^{86}+59060 q^{85}+63137 q^{84}+18940 q^{83}-48250 q^{82}-100827 q^{81}-104108 q^{80}-39317 q^{79}+63176 q^{78}+162419 q^{77}+167622 q^{76}+70659 q^{75}-92693 q^{74}-232947 q^{73}-253500 q^{72}-121546 q^{71}+132952 q^{70}+331550 q^{69}+362644 q^{68}+165312 q^{67}-169952 q^{66}-455762 q^{65}-502014 q^{64}-207811 q^{63}+237928 q^{62}+607679 q^{61}+632205 q^{60}+258986 q^{59}-338753 q^{58}-797916 q^{57}-763179 q^{56}-261150 q^{55}+483253 q^{54}+980938 q^{53}+900348 q^{52}+205544 q^{51}-692790 q^{50}-1177502 q^{49}-962377 q^{48}-71166 q^{47}+920165 q^{46}+1389200 q^{45}+936713 q^{44}-174355 q^{43}-1196663 q^{42}-1510284 q^{41}-793359 q^{40}+480296 q^{39}+1513405 q^{38}+1523101 q^{37}+489665 q^{36}-882073 q^{35}-1734843 q^{34}-1385111 q^{33}-80578 q^{32}+1351700 q^{31}+1832666 q^{30}+1041271 q^{29}-468324 q^{28}-1721154 q^{27}-1748009 q^{26}-549293 q^{25}+1105672 q^{24}+1949534 q^{23}+1414470 q^{22}-119797 q^{21}-1634951 q^{20}-1964344 q^{19}-894103 q^{18}+889871 q^{17}+2005998 q^{16}+1695002 q^{15}+170021 q^{14}-1543644 q^{13}-2140097 q^{12}-1212056 q^{11}+657080 q^{10}+2026626 q^9+1970649 q^8+515939 q^7-1359164 q^6-2260711 q^5-1577469 q^4+273280 q^3+1883026 q^2+2187926 q+976970-931323 q^{-1} -2157307 q^{-2} -1893519 q^{-3} -296676 q^{-4} +1414673 q^{-5} +2136498 q^{-6} +1404434 q^{-7} -260131 q^{-8} -1666401 q^{-9} -1908538 q^{-10} -843657 q^{-11} +667373 q^{-12} +1658528 q^{-13} +1507905 q^{-14} +382318 q^{-15} -886523 q^{-16} -1479924 q^{-17} -1046864 q^{-18} -30361 q^{-19} +905971 q^{-20} +1169119 q^{-21} +662338 q^{-22} -186409 q^{-23} -807055 q^{-24} -821489 q^{-25} -355208 q^{-26} +263383 q^{-27} +622264 q^{-28} +537974 q^{-29} +145088 q^{-30} -263289 q^{-31} -421230 q^{-32} -312460 q^{-33} -34549 q^{-34} +205459 q^{-35} +267735 q^{-36} +157234 q^{-37} -20098 q^{-38} -133588 q^{-39} -149712 q^{-40} -70701 q^{-41} +29488 q^{-42} +83394 q^{-43} +72557 q^{-44} +22346 q^{-45} -21110 q^{-46} -43985 q^{-47} -32343 q^{-48} -4874 q^{-49} +15681 q^{-50} +19492 q^{-51} +10333 q^{-52} +734 q^{-53} -8165 q^{-54} -8255 q^{-55} -2932 q^{-56} +1772 q^{-57} +3263 q^{-58} +2009 q^{-59} +1067 q^{-60} -1037 q^{-61} -1411 q^{-62} -502 q^{-63} +221 q^{-64} +369 q^{-65} +109 q^{-66} +266 q^{-67} -120 q^{-68} -199 q^{-69} -16 q^{-70} +55 q^{-71} +42 q^{-72} -52 q^{-73} +49 q^{-74} -5 q^{-75} -34 q^{-76} +11 q^{-77} +8 q^{-78} +7 q^{-79} -14 q^{-80} +3 q^{-81} +5 q^{-82} -4 q^{-83} + q^{-84} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{60}-4 q^{59}+2 q^{58}+9 q^{57}-5 q^{56}-2 q^{55}-35 q^{54}+9 q^{53}+78 q^{52}+24 q^{51}-2 q^{50}-234 q^{49}-123 q^{48}+256 q^{47}+344 q^{46}+343 q^{45}-653 q^{44}-912 q^{43}-60 q^{42}+923 q^{41}+1908 q^{40}-284 q^{39}-2244 q^{38}-2063 q^{37}+229 q^{36}+4410 q^{35}+2383 q^{34}-2044 q^{33}-5254 q^{32}-3503 q^{31}+5323 q^{30}+6610 q^{29}+1610 q^{28}-6835 q^{27}-9280 q^{26}+2669 q^{25}+9461 q^{24}+7637 q^{23}-4976 q^{22}-14134 q^{21}-2500 q^{20}+9273 q^{19}+13279 q^{18}-726 q^{17}-16431 q^{16}-7818 q^{15}+6885 q^{14}+17045 q^{13}+3954 q^{12}-16512 q^{11}-12057 q^{10}+3581 q^9+18858 q^8+8212 q^7-14791 q^6-14952 q^5-359 q^4+18417 q^3+11734 q^2-10923 q-15659-4667 q^{-1} +14854 q^{-2} +13309 q^{-3} -5243 q^{-4} -12982 q^{-5} -7653 q^{-6} +8713 q^{-7} +11442 q^{-8} -153 q^{-9} -7596 q^{-10} -7376 q^{-11} +2925 q^{-12} +6895 q^{-13} +1895 q^{-14} -2602 q^{-15} -4508 q^{-16} +81 q^{-17} +2698 q^{-18} +1345 q^{-19} -242 q^{-20} -1752 q^{-21} -309 q^{-22} +666 q^{-23} +403 q^{-24} +151 q^{-25} -454 q^{-26} -84 q^{-27} +124 q^{-28} +38 q^{-29} +63 q^{-30} -91 q^{-31} -2 q^{-32} +27 q^{-33} -8 q^{-34} +11 q^{-35} -14 q^{-36} +3 q^{-37} +5 q^{-38} -4 q^{-39} + q^{-40} </math> |

coloured_jones_5 = <math>q^{90}-4 q^{89}+2 q^{88}+9 q^{87}-5 q^{86}-8 q^{85}-8 q^{84}-11 q^{83}+20 q^{82}+71 q^{81}+29 q^{80}-74 q^{79}-149 q^{78}-157 q^{77}+43 q^{76}+386 q^{75}+535 q^{74}+142 q^{73}-629 q^{72}-1233 q^{71}-964 q^{70}+508 q^{69}+2323 q^{68}+2741 q^{67}+615 q^{66}-3068 q^{65}-5523 q^{64}-3818 q^{63}+2301 q^{62}+8706 q^{61}+9376 q^{60}+1607 q^{59}-10271 q^{58}-16735 q^{57}-10010 q^{56}+7863 q^{55}+23717 q^{54}+22560 q^{53}+908 q^{52}-26863 q^{51}-37290 q^{50}-16878 q^{49}+22875 q^{48}+50391 q^{47}+38553 q^{46}-9576 q^{45}-57548 q^{44}-62501 q^{43}-12860 q^{42}+55504 q^{41}+84185 q^{40}+41841 q^{39}-43024 q^{38}-99477 q^{37}-73282 q^{36}+21200 q^{35}+105906 q^{34}+103113 q^{33}+6837 q^{32}-103332 q^{31}-127723 q^{30}-37512 q^{29}+92962 q^{28}+146068 q^{27}+67383 q^{26}-77858 q^{25}-157705 q^{24}-94208 q^{23}+60130 q^{22}+164281 q^{21}+117290 q^{20}-42344 q^{19}-166996 q^{18}-136672 q^{17}+24919 q^{16}+167338 q^{15}+153331 q^{14}-8048 q^{13}-165525 q^{12}-167906 q^{11}-9396 q^{10}+161160 q^9+180507 q^8+28179 q^7-152563 q^6-190371 q^5-48880 q^4+138440 q^3+195494 q^2+70496 q-117398-193539 q^{-1} -91167 q^{-2} +90096 q^{-3} +182525 q^{-4} +107326 q^{-5} -58453 q^{-6} -161747 q^{-7} -115969 q^{-8} +26501 q^{-9} +132782 q^{-10} +114703 q^{-11} +1431 q^{-12} -99257 q^{-13} -103670 q^{-14} -21353 q^{-15} +65902 q^{-16} +85046 q^{-17} +31853 q^{-18} -37406 q^{-19} -63145 q^{-20} -33162 q^{-21} +16513 q^{-22} +41826 q^{-23} +28465 q^{-24} -3794 q^{-25} -24745 q^{-26} -20758 q^{-27} -2018 q^{-28} +12681 q^{-29} +13217 q^{-30} +3546 q^{-31} -5625 q^{-32} -7396 q^{-33} -2904 q^{-34} +2103 q^{-35} +3599 q^{-36} +1790 q^{-37} -611 q^{-38} -1566 q^{-39} -928 q^{-40} +176 q^{-41} +615 q^{-42} +361 q^{-43} -45 q^{-44} -198 q^{-45} -133 q^{-46} - q^{-47} +96 q^{-48} +34 q^{-49} -33 q^{-50} -9 q^{-51} +2 q^{-52} -9 q^{-53} +12 q^{-54} +7 q^{-55} -14 q^{-56} +3 q^{-57} +5 q^{-58} -4 q^{-59} + q^{-60} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{126}-4 q^{125}+2 q^{124}+9 q^{123}-5 q^{122}-8 q^{121}-14 q^{120}+16 q^{119}+13 q^{117}+76 q^{116}-19 q^{115}-87 q^{114}-173 q^{113}-37 q^{112}+32 q^{111}+212 q^{110}+597 q^{109}+324 q^{108}-193 q^{107}-1077 q^{106}-1170 q^{105}-1074 q^{104}+156 q^{103}+2687 q^{102}+3644 q^{101}+2879 q^{100}-1066 q^{99}-4766 q^{98}-8642 q^{97}-7628 q^{96}+740 q^{95}+10641 q^{94}+18227 q^{93}+14755 q^{92}+3147 q^{91}-19152 q^{90}-35574 q^{89}-31743 q^{88}-7345 q^{87}+31458 q^{86}+59060 q^{85}+63137 q^{84}+18940 q^{83}-48250 q^{82}-100827 q^{81}-104108 q^{80}-39317 q^{79}+63176 q^{78}+162419 q^{77}+167622 q^{76}+70659 q^{75}-92693 q^{74}-232947 q^{73}-253500 q^{72}-121546 q^{71}+132952 q^{70}+331550 q^{69}+362644 q^{68}+165312 q^{67}-169952 q^{66}-455762 q^{65}-502014 q^{64}-207811 q^{63}+237928 q^{62}+607679 q^{61}+632205 q^{60}+258986 q^{59}-338753 q^{58}-797916 q^{57}-763179 q^{56}-261150 q^{55}+483253 q^{54}+980938 q^{53}+900348 q^{52}+205544 q^{51}-692790 q^{50}-1177502 q^{49}-962377 q^{48}-71166 q^{47}+920165 q^{46}+1389200 q^{45}+936713 q^{44}-174355 q^{43}-1196663 q^{42}-1510284 q^{41}-793359 q^{40}+480296 q^{39}+1513405 q^{38}+1523101 q^{37}+489665 q^{36}-882073 q^{35}-1734843 q^{34}-1385111 q^{33}-80578 q^{32}+1351700 q^{31}+1832666 q^{30}+1041271 q^{29}-468324 q^{28}-1721154 q^{27}-1748009 q^{26}-549293 q^{25}+1105672 q^{24}+1949534 q^{23}+1414470 q^{22}-119797 q^{21}-1634951 q^{20}-1964344 q^{19}-894103 q^{18}+889871 q^{17}+2005998 q^{16}+1695002 q^{15}+170021 q^{14}-1543644 q^{13}-2140097 q^{12}-1212056 q^{11}+657080 q^{10}+2026626 q^9+1970649 q^8+515939 q^7-1359164 q^6-2260711 q^5-1577469 q^4+273280 q^3+1883026 q^2+2187926 q+976970-931323 q^{-1} -2157307 q^{-2} -1893519 q^{-3} -296676 q^{-4} +1414673 q^{-5} +2136498 q^{-6} +1404434 q^{-7} -260131 q^{-8} -1666401 q^{-9} -1908538 q^{-10} -843657 q^{-11} +667373 q^{-12} +1658528 q^{-13} +1507905 q^{-14} +382318 q^{-15} -886523 q^{-16} -1479924 q^{-17} -1046864 q^{-18} -30361 q^{-19} +905971 q^{-20} +1169119 q^{-21} +662338 q^{-22} -186409 q^{-23} -807055 q^{-24} -821489 q^{-25} -355208 q^{-26} +263383 q^{-27} +622264 q^{-28} +537974 q^{-29} +145088 q^{-30} -263289 q^{-31} -421230 q^{-32} -312460 q^{-33} -34549 q^{-34} +205459 q^{-35} +267735 q^{-36} +157234 q^{-37} -20098 q^{-38} -133588 q^{-39} -149712 q^{-40} -70701 q^{-41} +29488 q^{-42} +83394 q^{-43} +72557 q^{-44} +22346 q^{-45} -21110 q^{-46} -43985 q^{-47} -32343 q^{-48} -4874 q^{-49} +15681 q^{-50} +19492 q^{-51} +10333 q^{-52} +734 q^{-53} -8165 q^{-54} -8255 q^{-55} -2932 q^{-56} +1772 q^{-57} +3263 q^{-58} +2009 q^{-59} +1067 q^{-60} -1037 q^{-61} -1411 q^{-62} -502 q^{-63} +221 q^{-64} +369 q^{-65} +109 q^{-66} +266 q^{-67} -120 q^{-68} -199 q^{-69} -16 q^{-70} +55 q^{-71} +42 q^{-72} -52 q^{-73} +49 q^{-74} -5 q^{-75} -34 q^{-76} +11 q^{-77} +8 q^{-78} +7 q^{-79} -14 q^{-80} +3 q^{-81} +5 q^{-82} -4 q^{-83} + q^{-84} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 18, 8, 19], X[3, 9, 4, 8], X[17, 3, 18, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 18, 8, 19], X[3, 9, 4, 8], X[17, 3, 18, 2],
X[5, 15, 6, 14], X[9, 17, 10, 16], X[15, 11, 16, 10],
X[5, 15, 6, 14], X[9, 17, 10, 16], X[15, 11, 16, 10],
X[11, 5, 12, 4], X[13, 20, 14, 1], X[19, 12, 20, 13]]</nowiki></pre></td></tr>
X[11, 5, 12, 4], X[13, 20, 14, 1], X[19, 12, 20, 13]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 119]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4,
2, -10, 9]</nowiki></pre></td></tr>
2, -10, 9]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 119]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 14, 18, 16, 4, 20, 10, 2, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 14, 18, 16, 4, 20, 10, 2, 12]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 3, 3, 2}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -1, 2, 3, 3, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 119]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 119]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_119_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 119]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 119]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 119]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 23 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 119]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_119_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 119]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 119]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 23 2 3
31 - -- + -- - -- - 23 t + 10 t - 2 t
31 - -- + -- - -- - 23 t + 10 t - 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 119]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 119]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - z - 2 z - 2 z</nowiki></pre></td></tr>
1 - z - 2 z - 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 119], Knot[11, Alternating, 84]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 119], Knot[11, Alternating, 84]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 119]], KnotSignature[Knot[10, 119]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{101, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 119]], KnotSignature[Knot[10, 119]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 119]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{101, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 9 13 2 3 4 5 6

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 119]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 9 13 2 3 4 5 6
16 + q - -- + -- - -- - 17 q + 16 q - 12 q + 8 q - 4 q + q
16 + q - -- + -- - -- - 17 q + 16 q - 12 q + 8 q - 4 q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 119]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 119]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 119]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 2 2 3 3 2 4 6 8 10

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 119]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 2 2 3 3 2 4 6 8 10
-3 + q - --- + -- + -- - -- + -- + q + q - q + 4 q - 3 q +
-3 + q - --- + -- + -- - -- + -- + q + q - q + 4 q - 3 q +
10 8 6 4 2
10 8 6 4 2
Line 148: Line 99:
12 14 16 18
12 14 16 18
q + q - 2 q + q</nowiki></pre></td></tr>
q + q - 2 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 119]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 119]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
-2 2 2 z z 2 2 4 z 2 z 2 4
-2 2 2 z z 2 2 4 z 2 z 2 4
-1 + a + a - 2 z + -- - -- + a z - 2 z + -- - ---- + a z -
-1 + a + a - 2 z + -- - -- + a z - 2 z + -- - ---- + a z -
Line 161: Line 111:
2
2
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 119]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 119]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-2 2 z 3 z 4 z 2 z z 2 2
-2 2 z 3 z 4 z 2 z z 2 2
-1 - a - a - -- - --- - --- - 2 a z + 6 z + -- + -- + 4 a z +
-1 - a - a - -- - --- - --- - 2 a z + 6 z + -- + -- + 4 a z +
Line 192: Line 141:
4 2 3 a
4 2 3 a
a a a</nowiki></pre></td></tr>
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 119]], Vassiliev[3][Knot[10, 119]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 119]], Vassiliev[3][Knot[10, 119]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 119]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 6 3 7 6

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 119]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 6 3 7 6
- + 8 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 9 q t +
- + 8 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 9 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q 9 4 7 3 5 3 5 2 3 2 3 q t
Line 207: Line 154:
9 5 11 5 13 6
9 5 11 5 13 6
q t + 3 q t + q t</nowiki></pre></td></tr>
q t + 3 q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 119], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 119], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 4 5 7 30 27 34 99 56 97 185 59
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 4 5 7 30 27 34 99 56 97 185 59
173 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- -
173 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- -
11 10 9 8 7 6 5 4 3 2 q
11 10 9 8 7 6 5 4 3 2 q
Line 222: Line 168:
17 18
17 18
4 q + q</nowiki></pre></td></tr>
4 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:40, 30 August 2005

10 118.gif

10_118

10 120.gif

10_120

10 119.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 119's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 119 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X7,18,8,19 X3948 X17,3,18,2 X5,15,6,14 X9,17,10,16 X15,11,16,10 X11,5,12,4 X13,20,14,1 X19,12,20,13
Gauss code -1, 4, -3, 8, -5, 1, -2, 3, -6, 7, -8, 10, -9, 5, -7, 6, -4, 2, -10, 9
Dowker-Thistlethwaite code 6 8 14 18 16 4 20 10 2 12
Conway Notation [8*2:.20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif

Length is 11, width is 4,

Braid index is 4

10 119 ML.gif 10 119 AP.gif
[{12, 3}, {1, 5}, {6, 4}, {5, 2}, {3, 7}, {11, 6}, {8, 12}, {7, 9}, {2, 8}, {4, 10}, {9, 11}, {10, 1}]

[edit Notes on presentations of 10 119]


Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-7]
Hyperbolic Volume 15.9387
A-Polynomial See Data:10 119/A-polynomial

[edit Notes for 10 119's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 119's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 101, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a84,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
13          11
11         3 -3
9        51 4
7       73  -4
5      95   4
3     87    -1
1    89     -1
-1   69      3
-3  37       -4
-5 16        5
-7 3         -3
-91          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials