Rolfsen Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 40: | Line 40: | ||
<*GraphicsBox[NameString[K]<>"_ML.gif", "Show[DrawMorseLink[`1`]]", K]*> |
<*GraphicsBox[NameString[K]<>"_ML.gif", "Show[DrawMorseLink[`1`]]", K]*> |
||
<*InOut[ |
<*InOut[ |
||
" (#[``]&) /@ { |
" (#[``]&) /@ {\n |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus,\n |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex\n |
||
}", K |
}", K |
||
]*> |
]*> |
Revision as of 17:26, 31 August 2005
[[Image:Data:Rolfsen Splice Base/Previous Knot.gif|80px|link=Data:Rolfsen Splice Base/Previous Knot]] |
[[Image:Data:Rolfsen Splice Base/Next Knot.gif|80px|link=Data:Rolfsen Splice Base/Next Knot]] |
File:Rolfsen Splice Base.gif (KnotPlot image) |
See the full Rolfsen Knot Table. Visit <*n*>&id=<*k*> Rolfsen Splice Base's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit Rolfsen Splice Base at Knotilus! |
Knot presentations
[edit Notes on presentations of Rolfsen Splice Base]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Rolfsen Splice Base/PD Presentation |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
Data:Rolfsen Splice Base/Gauss Code |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
Data:Rolfsen Splice Base/DT Code |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
Data:Rolfsen Splice Base/Conway Notation |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Data:Rolfsen Splice Base/BraidWord |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ Data:Rolfsen Splice Base/MinimalBraidWidth, Data:Rolfsen Splice Base/MinimalBraidLength, Data:Rolfsen Splice Base/BraidIndex } |
In[11]:=
|
Show[BraidPlot[br]]
|
Data:Rolfsen Splice Base/BraidPlot |
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
File:Rolfsen Splice Base ML.gif |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentationData:Rolfsen Splice Base/Arc Presentation |
In[14]:=
|
Draw[ap]
|
File:Rolfsen Splice Base AP.gif |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
[edit Notes for Rolfsen Splice Base's three dimensional invariants] |
Four dimensional invariants
|
[edit Notes for Rolfsen Splice Base's four dimensional invariants] |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Rolfsen Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Rolfsen Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Rolfsen Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Rolfsen Splice Base/Determinant, Data:Rolfsen Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Rolfsen Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Rolfsen Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Rolfsen Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>}
Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Rolfsen Splice Base"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Data:Rolfsen Splice Base/Alexander Polynomial, Data:Rolfsen Splice Base/Jones Polynomial } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]} |
Vassiliev invariants
V2 and V3: | (Data:Rolfsen Splice Base/V 2, Data:Rolfsen Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Rolfsen Splice Base/Signature is the signature of Rolfsen Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Rolfsen Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Rolfsen Splice Base/Integral Khovanov Homology |
The Coloured Jones Polynomials
2 | <*ColouredJones[K, 2][q]*> |
3 | <*ColouredJones[K, 3][q]*> |
4 | <*ColouredJones[K, 4][q]*> |
5 | <*ColouredJones[K, 5][q]*> |
6 | <*ColouredJones[K, 6][q]*> |
7 | <*ColouredJones[K, 7][q]*> |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|