5 1: Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
same_alexander = <nowiki>[[10_132]], </nowiki> | |
same_alexander = <nowiki>[[10_132]], </nowiki> | |
||
same_jones = <nowiki>[[10_132]], </nowiki> | |
same_jones = <nowiki>[[10_132]], </nowiki> | |
||
khovanov_table = <table border=1> |
|||
khovanov_table = <math>\textrm{WikiForm}(\textrm{<table border=1>$\backslash $n<tr align=center>$\backslash $n<td width=20.$\%$><table cellpadding=0 cellspacing=0>$\backslash $n <tr><td>$\backslash \backslash $</td><td>$\&$nbsp;</td><td>r</td></tr>$\backslash $n<tr><td>$\&$nbsp;</td><td>$\&$nbsp;$\backslash \backslash \&$nbsp;</td><td>$\&$nbsp;</td></tr>$\backslash $n<tr><td>j</td><td>$\&$nbsp;</td><td>$\backslash \backslash $</td></tr>$\backslash $n</table></td>$\backslash $n <td width=10.$\%$>-5</td ><td width=10.$\%$>-4</td ><td width=10.$\%$>-3</td ><td width=10.$\%$>-2</td ><td width=10.$\%$>-1</td ><td width=10.$\%$>0</td ><td width=20.$\%$>$\&$chi;</td></tr>$\backslash $n<tr align=center><td>-3</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>$\backslash $n<tr align=center><td>-5</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td bgcolor=yellow>$\&$nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>$\backslash $n<tr align=center><td>-7</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>$\&$nbsp;</td><td>$\&$nbsp;</td><td>1</td></tr>$\backslash $n<tr align=center><td>-9</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td bgcolor=yellow>$\&$nbsp;</td><td bgcolor=yellow>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>0</td></tr>$\backslash $n<tr align=center><td>-11</td><td>$\&$nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>0</td></tr>$\backslash $n<tr align=center><td>-13</td><td bgcolor=yellow>$\&$nbsp;</td><td bgcolor=yellow>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>0</td></tr>$\backslash $n<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>$\&$nbsp;</td><td>-1</td></tr>$\backslash $n</table>})</math> | |
|||
<tr align=center> |
|||
<td width=20.%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>χ</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math> q^{-4} + q^{-7} - q^{-9} + q^{-10} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} - q^{-18} + q^{-19} </math> | |
coloured_jones_2 = <math> q^{-4} + q^{-7} - q^{-9} + q^{-10} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} - q^{-18} + q^{-19} </math> | |
||
coloured_jones_3 = <math> q^{-6} + q^{-10} - q^{-13} + q^{-14} - q^{-17} + q^{-18} - q^{-21} - q^{-25} + q^{-27} - q^{-29} + q^{-31} + q^{-35} - q^{-36} </math> | |
coloured_jones_3 = <math> q^{-6} + q^{-10} - q^{-13} + q^{-14} - q^{-17} + q^{-18} - q^{-21} - q^{-25} + q^{-27} - q^{-29} + q^{-31} + q^{-35} - q^{-36} </math> | |
||
Line 33: | Line 48: | ||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
</table> |
||
{{InOut | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 2 |$\backslash $nin = <nowiki>PD[Knot[5, 1]]</nowiki> |$\backslash $nout = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3], $\backslash $n $\backslash $n X[9, 4, 10, 5]]</nowiki> $\}\}$})</math> |
|||
n = 2 | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 3 |$\backslash $nin = <nowiki>GaussCode[Knot[5, 1]]</nowiki> |$\backslash $nout = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> $\}\}$})</math> |
|||
in = <nowiki>PD[Knot[5, 1]]</nowiki> | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 4 |$\backslash $nin = <nowiki>DTCode[Knot[5, 1]]</nowiki> |$\backslash $nout = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> $\}\}$})</math> |
|||
out = <nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3], |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 5 |$\backslash $nin = <nowiki>br = BR[Knot[5, 1]]</nowiki> |$\backslash $nout = <nowiki>BR[2, $\{$-1, -1, -1, -1, -1$\}$]</nowiki> $\}\}$})</math> |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 6 |$\backslash $nin = <nowiki>$\{$First[br], Crossings[br]$\}$</nowiki> |$\backslash $nout = <nowiki>$\{$2, 5$\}$</nowiki> $\}\}$})</math> |
|||
X[9, 4, 10, 5]]</nowiki> }} |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 7 |$\backslash $nin = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> |$\backslash $nout = <nowiki>2</nowiki> $\}\}$})</math> |
|||
{{InOut | |
|||
<math>\textrm{WikiForm}(\textrm{<tr valign=top><td><pre style=$\texttt{"}$color: blue; border: 0px; padding: 0em$\texttt{"}$><nowiki>In[8]:=</nowiki></pre></td><td><pre style=$\texttt{"}$color: red; border: 0px; padding: 0em$\texttt{"}$><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5$\_$1$\_$ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr><nowiki>})</math> |
|||
n = 3 | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 9 |$\backslash $nin = <nowiki> ($\#$[Knot[5, 1]]$\&$) /@ $\{\backslash $n SymmetryType, UnknottingNumber, ThreeGenus,$\backslash $n BridgeIndex, SuperBridgeIndex, NakanishiIndex$\backslash $n $\}$</nowiki> |$\backslash $nout = <nowiki>$\{$Reversible, 2, 2, 2, 3, 1$\}$</nowiki> $\}\}$})</math> |
|||
in = <nowiki>GaussCode[Knot[5, 1]]</nowiki> | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 10 |$\backslash $nin = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> |$\backslash $nout = <nowiki> -2 1 2$\backslash $n1 + t - - - t + t$\backslash $n t</nowiki> $\}\}$})</math> |
|||
out = <nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki> }} |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 11 |$\backslash $nin = <nowiki>Conway[Knot[5, 1]][z]</nowiki> |$\backslash $nout = <nowiki> 2 4$\backslash $n1 + 3 z + z</nowiki> $\}\}$})</math> |
|||
{{InOut | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 12 |$\backslash $nin = <nowiki>Select[AllKnots[], (alex === Alexander[$\#$][t])$\&$]</nowiki> |$\backslash $nout = <nowiki>$\{$Knot[5, 1], Knot[10, 132]$\}$</nowiki> $\}\}$})</math> |
|||
n = 4 | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 13 |$\backslash $nin = <nowiki>$\{$KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]$\}$</nowiki> |$\backslash $nout = <nowiki>$\{$5, -4$\}$</nowiki> $\}\}$})</math> |
|||
in = <nowiki>DTCode[Knot[5, 1]]</nowiki> | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 14 |$\backslash $nin = <nowiki>Jones[Knot[5, 1]][q]</nowiki> |$\backslash $nout = <nowiki> -7 -6 -5 -4 -2$\backslash $n-q + q - q + q + q</nowiki> $\}\}$})</math> |
|||
out = <nowiki>DTCode[6, 8, 10, 2, 4]</nowiki> }} |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 15 |$\backslash $nin = <nowiki>Select[AllKnots[], (J === Jones[$\#$][q] || (J /. q-> 1/q) === Jones[$\#$][q])$\&$]</nowiki> |$\backslash $nout = <nowiki>$\{$Knot[5, 1], Knot[10, 132]$\}$</nowiki> $\}\}$})</math> |
|||
{{InOut | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 16 |$\backslash $nin = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> |$\backslash $nout = <nowiki> -22 -20 -18 -14 -12 2 -8 -6$\backslash $n-q - q - q + q + q + --- + q + q$\backslash $n 10$\backslash $n q</nowiki> $\}\}$})</math> |
|||
n = 5 | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 17 |$\backslash $nin = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> |$\backslash $nout = <nowiki> 4 6 4 2 6 2 4 4$\backslash $n3 a - 2 a + 4 a z - a z + a z</nowiki> $\}\}$})</math> |
|||
in = <nowiki>br = BR[Knot[5, 1]]</nowiki> | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 18 |$\backslash $nin = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> |$\backslash $nout = <nowiki> 4 6 5 7 9 4 2 6 2 8 2$\backslash $n3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z + $\backslash $n $\backslash $n 5 3 7 3 4 4 6 4$\backslash $n a z + a z + a z + a z</nowiki> $\}\}$})</math> |
|||
out = <nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki> }} |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 19 |$\backslash $nin = <nowiki>$\{$Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]$\}$</nowiki> |$\backslash $nout = <nowiki>$\{$3, -5$\}$</nowiki> $\}\}$})</math> |
|||
{{InOut | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 20 |$\backslash $nin = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> |$\backslash $nout = <nowiki> -5 -3 1 1 1 1$\backslash $nq + q + ------ + ------ + ------ + -----$\backslash $n 15 5 11 4 11 3 7 2$\backslash $n q t q t q t q t</nowiki> $\}\}$})</math> |
|||
n = 6 | |
|||
<math>\textrm{WikiForm}(\textrm{$\{\{$InOut |$\backslash $nn = 21 |$\backslash $nin = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> |$\backslash $nout = <nowiki> -19 -18 -16 2 -13 -12 -10 -9 -7 -4$\backslash $nq - q + q - --- + q - q + q - q + q + q$\backslash $n 15$\backslash $n q</nowiki> $\}\}$})</math> }} |
|||
in = <nowiki>{First[br], Crossings[br]}</nowiki> | |
|||
out = <nowiki>{2, 5}</nowiki> }} |
|||
{{InOut | |
|||
n = 7 | |
|||
in = <nowiki>BraidIndex[Knot[5, 1]]</nowiki> | |
|||
out = <nowiki>2</nowiki> }} |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr><nowiki> |
|||
{{InOut | |
|||
n = 9 | |
|||
in = <nowiki> (#[Knot[5, 1]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki> | |
|||
out = <nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki> }} |
|||
{{InOut | |
|||
n = 10 | |
|||
in = <nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki> | |
|||
out = <nowiki> -2 1 2 |
|||
1 + t - - - t + t |
|||
t</nowiki> }} |
|||
{{InOut | |
|||
n = 11 | |
|||
in = <nowiki>Conway[Knot[5, 1]][z]</nowiki> | |
|||
out = <nowiki> 2 4 |
|||
1 + 3 z + z</nowiki> }} |
|||
{{InOut | |
|||
n = 12 | |
|||
in = <nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki> | |
|||
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }} |
|||
{{InOut | |
|||
n = 13 | |
|||
in = <nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki> | |
|||
out = <nowiki>{5, -4}</nowiki> }} |
|||
{{InOut | |
|||
n = 14 | |
|||
in = <nowiki>Jones[Knot[5, 1]][q]</nowiki> | |
|||
out = <nowiki> -7 -6 -5 -4 -2 |
|||
-q + q - q + q + q</nowiki> }} |
|||
{{InOut | |
|||
n = 15 | |
|||
in = <nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki> | |
|||
out = <nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki> }} |
|||
{{InOut | |
|||
n = 16 | |
|||
in = <nowiki>A2Invariant[Knot[5, 1]][q]</nowiki> | |
|||
out = <nowiki> -22 -20 -18 -14 -12 2 -8 -6 |
|||
-q - q - q + q + q + --- + q + q |
|||
10 |
|||
q</nowiki> }} |
|||
{{InOut | |
|||
n = 17 | |
|||
in = <nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki> | |
|||
out = <nowiki> 4 6 4 2 6 2 4 4 |
|||
3 a - 2 a + 4 a z - a z + a z</nowiki> }} |
|||
{{InOut | |
|||
n = 18 | |
|||
in = <nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki> | |
|||
out = <nowiki> 4 6 5 7 9 4 2 6 2 8 2 |
|||
3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z + |
|||
5 3 7 3 4 4 6 4 |
|||
a z + a z + a z + a z</nowiki> }} |
|||
{{InOut | |
|||
n = 19 | |
|||
in = <nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki> | |
|||
out = <nowiki>{3, -5}</nowiki> }} |
|||
{{InOut | |
|||
n = 20 | |
|||
in = <nowiki>Kh[Knot[5, 1]][q, t]</nowiki> | |
|||
out = <nowiki> -5 -3 1 1 1 1 |
|||
q + q + ------ + ------ + ------ + ----- |
|||
15 5 11 4 11 3 7 2 |
|||
q t q t q t q t</nowiki> }} |
|||
{{InOut | |
|||
n = 21 | |
|||
in = <nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki> | |
|||
out = <nowiki> -19 -18 -16 2 -13 -12 -10 -9 -7 -4 |
|||
q - q + q - --- + q - q + q - q + q + q |
|||
15 |
|||
q</nowiki> }} }} |
Revision as of 15:12, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1 |
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
Planar diagram presentation | X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
Gauss code | -1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
Dowker-Thistlethwaite code | 6 8 10 2 4 |
Conway Notation | [5] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 5, width is 2, Braid index is 2 |
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
[edit Notes on presentations of 5 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 2 4 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 5, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
B3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
B4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
C3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
C4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {[[10_132]], }
Same Jones Polynomial (up to mirroring, ): {[[10_132]], }
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{[[10_132]], } |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{[[10_132]], } |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|
In[10]:=
|
alex = Alexander[Knot[5, 1]][t]
|
Out[10]=
|
-2 1 2
1 + t - - - t + t
t
|
In[11]:=
|
Conway[Knot[5, 1]][z]
|
Out[11]=
|
2 4
1 + 3 z + z
|
In[12]:=
|
Select[AllKnots[], (alex === Alexander[#][t])&]
|
Out[12]=
|
{Knot[5, 1], Knot[10, 132]}
|
In[13]:=
|
{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}
|
Out[13]=
|
{5, -4}
|
In[14]:=
|
Jones[Knot[5, 1]][q]
|
Out[14]=
|
-7 -6 -5 -4 -2
-q + q - q + q + q
|
In[15]:=
|
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
|
Out[15]=
|
{Knot[5, 1], Knot[10, 132]}
|
In[16]:=
|
A2Invariant[Knot[5, 1]][q]
|
Out[16]=
|
-22 -20 -18 -14 -12 2 -8 -6
-q - q - q + q + q + --- + q + q
10
q
|
In[17]:=
|
HOMFLYPT[Knot[5, 1]][a, z]
|
Out[17]=
|
4 6 4 2 6 2 4 4
3 a - 2 a + 4 a z - a z + a z
|
In[18]:=
|
Kauffman[Knot[5, 1]][a, z]
|
Out[18]=
|
4 6 5 7 9 4 2 6 2 8 2
3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z +
5 3 7 3 4 4 6 4
a z + a z + a z + a z
|
In[19]:=
|
{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}
|
Out[19]=
|
{3, -5}
|
In[20]:=
|
Kh[Knot[5, 1]][q, t]
|
Out[20]=
|
-5 -3 1 1 1 1
q + q + ------ + ------ + ------ + -----
15 5 11 4 11 3 7 2
q t q t q t q t
|
In[21]:=
|
ColouredJones[Knot[5, 1], 2][q]
|
Out[21]=
|
-19 -18 -16 2 -13 -12 -10 -9 -7 -4
q - q + q - --- + q - q + q - q + q + q
15
q
|