|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 42: |
Line 45: |
|
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} + q^{-9} +3 q^{-10} -6 q^{-11} +5 q^{-13} +4 q^{-14} -10 q^{-15} +4 q^{-16} +6 q^{-17} -4 q^{-18} -21 q^{-19} +28 q^{-20} +25 q^{-21} -38 q^{-22} -56 q^{-23} +64 q^{-24} +81 q^{-25} -71 q^{-26} -125 q^{-27} +82 q^{-28} +155 q^{-29} -71 q^{-30} -191 q^{-31} +62 q^{-32} +203 q^{-33} -34 q^{-34} -215 q^{-35} +12 q^{-36} +207 q^{-37} +20 q^{-38} -196 q^{-39} -47 q^{-40} +173 q^{-41} +76 q^{-42} -146 q^{-43} -101 q^{-44} +116 q^{-45} +111 q^{-46} -73 q^{-47} -122 q^{-48} +45 q^{-49} +106 q^{-50} -5 q^{-51} -94 q^{-52} -10 q^{-53} +64 q^{-54} +24 q^{-55} -43 q^{-56} -23 q^{-57} +22 q^{-58} +19 q^{-59} -11 q^{-60} -11 q^{-61} +4 q^{-62} +5 q^{-63} -3 q^{-65} + q^{-66} </math> | |
|
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} + q^{-9} +3 q^{-10} -6 q^{-11} +5 q^{-13} +4 q^{-14} -10 q^{-15} +4 q^{-16} +6 q^{-17} -4 q^{-18} -21 q^{-19} +28 q^{-20} +25 q^{-21} -38 q^{-22} -56 q^{-23} +64 q^{-24} +81 q^{-25} -71 q^{-26} -125 q^{-27} +82 q^{-28} +155 q^{-29} -71 q^{-30} -191 q^{-31} +62 q^{-32} +203 q^{-33} -34 q^{-34} -215 q^{-35} +12 q^{-36} +207 q^{-37} +20 q^{-38} -196 q^{-39} -47 q^{-40} +173 q^{-41} +76 q^{-42} -146 q^{-43} -101 q^{-44} +116 q^{-45} +111 q^{-46} -73 q^{-47} -122 q^{-48} +45 q^{-49} +106 q^{-50} -5 q^{-51} -94 q^{-52} -10 q^{-53} +64 q^{-54} +24 q^{-55} -43 q^{-56} -23 q^{-57} +22 q^{-58} +19 q^{-59} -11 q^{-60} -11 q^{-61} +4 q^{-62} +5 q^{-63} -3 q^{-65} + q^{-66} </math> | |
|
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} + q^{-11} - q^{-12} +6 q^{-13} -10 q^{-14} + q^{-15} +4 q^{-16} -2 q^{-17} +24 q^{-18} -26 q^{-19} -5 q^{-20} -5 q^{-21} -11 q^{-22} +76 q^{-23} -24 q^{-24} -10 q^{-25} -58 q^{-26} -74 q^{-27} +156 q^{-28} +41 q^{-29} +58 q^{-30} -140 q^{-31} -272 q^{-32} +164 q^{-33} +169 q^{-34} +302 q^{-35} -140 q^{-36} -590 q^{-37} -13 q^{-38} +225 q^{-39} +683 q^{-40} +58 q^{-41} -854 q^{-42} -330 q^{-43} +93 q^{-44} +1005 q^{-45} +383 q^{-46} -918 q^{-47} -586 q^{-48} -167 q^{-49} +1114 q^{-50} +649 q^{-51} -805 q^{-52} -656 q^{-53} -407 q^{-54} +1025 q^{-55} +761 q^{-56} -604 q^{-57} -572 q^{-58} -579 q^{-59} +813 q^{-60} +759 q^{-61} -353 q^{-62} -401 q^{-63} -695 q^{-64} +505 q^{-65} +667 q^{-66} -61 q^{-67} -145 q^{-68} -731 q^{-69} +135 q^{-70} +460 q^{-71} +175 q^{-72} +162 q^{-73} -603 q^{-74} -161 q^{-75} +148 q^{-76} +224 q^{-77} +393 q^{-78} -325 q^{-79} -243 q^{-80} -118 q^{-81} +89 q^{-82} +411 q^{-83} -61 q^{-84} -131 q^{-85} -194 q^{-86} -61 q^{-87} +258 q^{-88} +48 q^{-89} -2 q^{-90} -119 q^{-91} -98 q^{-92} +100 q^{-93} +37 q^{-94} +36 q^{-95} -37 q^{-96} -57 q^{-97} +25 q^{-98} +8 q^{-99} +20 q^{-100} -4 q^{-101} -18 q^{-102} +4 q^{-103} +5 q^{-105} -3 q^{-107} + q^{-108} </math> | |
|
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} + q^{-11} - q^{-12} +6 q^{-13} -10 q^{-14} + q^{-15} +4 q^{-16} -2 q^{-17} +24 q^{-18} -26 q^{-19} -5 q^{-20} -5 q^{-21} -11 q^{-22} +76 q^{-23} -24 q^{-24} -10 q^{-25} -58 q^{-26} -74 q^{-27} +156 q^{-28} +41 q^{-29} +58 q^{-30} -140 q^{-31} -272 q^{-32} +164 q^{-33} +169 q^{-34} +302 q^{-35} -140 q^{-36} -590 q^{-37} -13 q^{-38} +225 q^{-39} +683 q^{-40} +58 q^{-41} -854 q^{-42} -330 q^{-43} +93 q^{-44} +1005 q^{-45} +383 q^{-46} -918 q^{-47} -586 q^{-48} -167 q^{-49} +1114 q^{-50} +649 q^{-51} -805 q^{-52} -656 q^{-53} -407 q^{-54} +1025 q^{-55} +761 q^{-56} -604 q^{-57} -572 q^{-58} -579 q^{-59} +813 q^{-60} +759 q^{-61} -353 q^{-62} -401 q^{-63} -695 q^{-64} +505 q^{-65} +667 q^{-66} -61 q^{-67} -145 q^{-68} -731 q^{-69} +135 q^{-70} +460 q^{-71} +175 q^{-72} +162 q^{-73} -603 q^{-74} -161 q^{-75} +148 q^{-76} +224 q^{-77} +393 q^{-78} -325 q^{-79} -243 q^{-80} -118 q^{-81} +89 q^{-82} +411 q^{-83} -61 q^{-84} -131 q^{-85} -194 q^{-86} -61 q^{-87} +258 q^{-88} +48 q^{-89} -2 q^{-90} -119 q^{-91} -98 q^{-92} +100 q^{-93} +37 q^{-94} +36 q^{-95} -37 q^{-96} -57 q^{-97} +25 q^{-98} +8 q^{-99} +20 q^{-100} -4 q^{-101} -18 q^{-102} +4 q^{-103} +5 q^{-105} -3 q^{-107} + q^{-108} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 51: |
Line 54: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 63]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 63]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[17, 20, 18, 1], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[17, 20, 18, 1], |
Line 71: |
Line 74: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 63]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_63_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 63]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_63_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 63]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 63]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 63]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 63]][t]</nowiki></pre></td></tr> |