K11n86: Difference between revisions
No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was  generated from the splice template "Hoste-Thistlethwaite_Splice_Template". Please do not edit! -->  | 
  |||
<!-- This page was generated from the splice base [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit!  | 
|||
<!--  --> <!--  | 
  |||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
 -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. -->  | 
|||
<!--  -->  | 
|||
<!--  -->  | 
|||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit!  | 
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page.  | 
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. -->  | 
|||
<!--  -->  | 
|||
{{Hoste-Thistlethwaite Knot Page|  | 
  {{Hoste-Thistlethwaite Knot Page|  | 
||
n = 11 |  | 
  n = 11 |  | 
||
t = n |  | 
  t = <nowiki>n</nowiki> |  | 
||
k = 86 |  | 
  k = 86 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,10,-4,11,-5,-2,6,-3,-7,4,-8,5,-9,7,-10,8,-11,9/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,10,-4,11,-5,-2,6,-3,-7,4,-8,5,-9,7,-10,8,-11,9/goTop.html |  | 
||
| Line 40: | Line 49: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>  | 
           <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>  | 
||
         </table>   | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, NonAlternating, 86]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Knot[11, NonAlternating, 86]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[11, NonAlternating, 86]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[7, 15, 8, 14],   | 
|||
  X[9, 16, 10, 17], X[2, 11, 3, 12], X[13, 19, 14, 18],   | 
    X[9, 16, 10, 17], X[2, 11, 3, 12], X[13, 19, 14, 18],   | 
||
  X[15, 20, 16, 21], X[17, 1, 18, 22], X[19, 6, 20, 7], X[21, 9, 22, 8]]</nowiki></  | 
    X[15, 20, 16, 21], X[17, 1, 18, 22], X[19, 6, 20, 7], X[21, 9, 22, 8]]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, NonAlternating, 86]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -1, 3, 10, -4, 11, -5, -2, 6, -3, -7, 4, -8, 5, -9,   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[11, NonAlternating, 86]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -1, 3, 10, -4, 11, -5, -2, 6, -3, -7, 4, -8, 5, -9,   | 
|||
  7, -10, 8, -11, 9]</nowiki></  | 
    7, -10, 8, -11, 9]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, NonAlternating, 86]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, NonAlternating, 86]]</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[11, NonAlternating, 86]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:K11n86_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[6]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, NonAlternating, 86]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -3   4    7            2    3  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, NonAlternating, 86]]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[11, NonAlternating, 86]]]</nowiki></code></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:K11n86_ML.gif]]</td></tr><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[11, NonAlternating, 86]][t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -3   4    7            2    3  | 
|||
9 - t   + -- - - - 7 t + 4 t  - t  | 
  9 - t   + -- - - - 7 t + 4 t  - t  | 
||
           2   t  | 
             2   t  | 
||
          t</nowiki></  | 
            t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, NonAlternating, 86]][z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       4    6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
|||
1 - 2 z  - z</nowiki></pre></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[11, NonAlternating, 86]][z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, NonAlternating, 86]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       4    6  | 
|||
1 - 2 z  - z</nowiki></code></td></tr>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, NonAlternating, 86]][q]</nowiki></pre></td></tr>  | 
  |||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -2   3            2      3      4      5    6  | 
  |||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, NonAlternating, 86]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[11, NonAlternating, 86]], KnotSignature[Knot[11, NonAlternating, 86]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{33, 0}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Knot[11, NonAlternating, 86]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -2   3            2      3      4      5    6  | 
|||
5 + q   - - - 5 q + 6 q  - 5 q  + 4 q  - 3 q  + q  | 
  5 + q   - - - 5 q + 6 q  - 5 q  + 4 q  - 3 q  + q  | 
||
          q</nowiki></  | 
            q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, NonAlternating, 86]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, NonAlternating, 86]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, NonAlternating, 86]][q]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[11, NonAlternating, 86]][q]</nowiki></code></td></tr>  | 
|||
q   - q   + q   + 2 q  + 2 q  - q   - q   - q   + q</nowiki></pre></td></tr>  | 
  |||
<tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, NonAlternating, 86]][a, z]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6    -4    -2      4      8    10    12    16    18  | 
|||
q   - q   + q   + 2 q  + 2 q  - q   - q   - q   + q</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[11, NonAlternating, 86]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                   2      2      2      3       3  | 
|||
    z    3 z   3 z            2   z    3 z    9 z    8 z    13 z  | 
      z    3 z   3 z            2   z    3 z    9 z    8 z    13 z  | 
||
1 - -- - --- - --- - a z - 5 z  + -- - ---- - ---- + ---- + ----- +   | 
  1 - -- - --- - --- - a z - 5 z  + -- - ---- - ---- + ---- + ----- +   | 
||
| Line 95: | Line 170: | ||
  -- - ----- - ----- + ---- - ---- + z  + ---- + ---- + -- + --  | 
    -- - ----- - ----- + ---- - ---- + z  + ---- + ---- + -- + --  | 
||
   6     4       2       5     a            4      2     3   a  | 
     6     4       2       5     a            4      2     3   a  | 
||
  a     a       a       a                  a      a     a</nowiki></  | 
    a     a       a       a                  a      a     a</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, NonAlternating, 86]], Vassiliev[3][Knot[11, NonAlternating, 86]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[11, NonAlternating, 86]], Vassiliev[3][Knot[11, NonAlternating, 86]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[11, NonAlternating, 86]][q, t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3           1      2      1               3        3  2      5  2  | 
|||
- + 3 q + ----- + ---- + --- + 3 q t + 2 q  t + 3 q  t  + 3 q  t  +   | 
  - + 3 q + ----- + ---- + --- + 3 q t + 2 q  t + 3 q  t  + 3 q  t  +   | 
||
q          5  2    3     q t  | 
  q          5  2    3     q t  | 
||
| Line 105: | Line 190: | ||
     5  3      7  3      7  4      9  4    9  5      11  5    13  6  | 
       5  3      7  3      7  4      9  4    9  5      11  5    13  6  | 
||
  2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q   t  + q   t</nowiki></  | 
    2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q   t  + q   t</nowiki></code></td></tr>  | 
||
</table> }}  | 
|||
Revision as of 16:24, 1 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. | 
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X7,15,8,14 X9,16,10,17 X2,11,3,12 X13,19,14,18 X15,20,16,21 X17,1,18,22 X19,6,20,7 X21,9,22,8 | 
| Gauss code | 1, -6, 2, -1, 3, 10, -4, 11, -5, -2, 6, -3, -7, 4, -8, 5, -9, 7, -10, 8, -11, 9 | 
| Dowker-Thistlethwaite code | 4 10 12 -14 -16 2 -18 -20 -22 -6 -8 | 
| A Braid Representative | {{{braid_table}}} | 
| A Morse Link Presentation |  
 | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["K11n86"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 33, 0 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["K11n86"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{} | 
Vassiliev invariants
| V2 and V3: | (0, 0) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n86. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
 See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top.  | 
  | 



