L11a4: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 4]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 4]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 52: | Line 61: | ||
3, -10, 9, -7, 8, -6}]</nowiki></pre></td></tr> |
3, -10, 9, -7, 8, -6}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 4]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a4_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 4]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 4]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(3/2) 4 3/2 5/2 7/2 9/2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 4]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 4]], KnotSignature[Link[11, Alternating, 4]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 3}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 4]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(3/2) 4 3/2 5/2 7/2 9/2 |
|||
q - ------- + 7 Sqrt[q] - 14 q + 18 q - 22 q + 22 q - |
q - ------- + 7 Sqrt[q] - 14 q + 18 q - 22 q + 22 q - |
||
Sqrt[q] |
Sqrt[q] |
||
| Line 70: | Line 71: | ||
11/2 13/2 15/2 17/2 19/2 |
11/2 13/2 15/2 17/2 19/2 |
||
19 q + 15 q - 9 q + 4 q - q</nowiki></pre></td></tr> |
19 q + 15 q - 9 q + 4 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 4]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 2 4 6 8 10 12 14 16 18 |
||
-q + -- + 2 q + 6 q - q + 6 q - q - q + q - 5 q + 3 q - |
-q + -- + 2 q + 6 q - q + 6 q - q - q + q - 5 q + 3 q - |
||
2 |
2 |
||
| Line 78: | Line 79: | ||
20 24 26 28 |
20 24 26 28 |
||
3 q + 2 q - 2 q + q</nowiki></pre></td></tr> |
3 q + 2 q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 4]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 3 |
||
1 3 2 z 2 z 2 z z 2 z 3 z 2 z 2 z |
1 3 2 z 2 z 2 z z 2 z 3 z 2 z 2 z |
||
---- - ---- + --- - -- + --- - --- + - - ---- + ---- + ---- - ---- - |
---- - ---- + --- - -- + --- - --- + - - ---- + ---- + ---- - ---- - |
||
| Line 90: | Line 91: | ||
7 5 3 a 5 3 |
7 5 3 a 5 3 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 4]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
-6 3 3 1 3 2 2 z 4 z 3 z z 2 z |
-6 3 3 1 3 2 2 z 4 z 3 z z 2 z |
||
-a - -- - -- + ---- + ---- + --- - --- - --- - --- - - - ---- + |
-a - -- - -- + ---- + ---- + --- - --- - --- - --- - - - ---- + |
||
| Line 126: | Line 127: | ||
6 4 |
6 4 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 4]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
{0, -(-)} |
|||
2</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 4]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 1 -2 3 4 3 q 4 6 |
2 4 1 -2 3 4 3 q 4 6 |
||
10 q + 6 q + ----- + t + ----- + - + ---- + 10 q t + 8 q t + |
10 q + 6 q + ----- + t + ----- + - + ---- + 10 q t + 8 q t + |
||
Revision as of 12:20, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a4's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X10,6,11,5 X8493 X22,14,5,13 X20,12,21,11 X12,22,13,21 X14,20,15,19 X18,10,19,9 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {4, -1, 2, -5, 10, -4, 7, -8, 6, -9, 11, -2, 3, -10, 9, -7, 8, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^4-4 t(2)^3+5 t(2)^2-4 t(2)+2\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{19/2}+4 q^{17/2}-9 q^{15/2}+15 q^{13/2}-19 q^{11/2}+22 q^{9/2}-22 q^{7/2}+18 q^{5/2}-14 q^{3/2}+7 \sqrt{q}-\frac{4}{\sqrt{q}}+\frac{1}{q^{3/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-7} -2 z^3 a^{-7} -z a^{-7} +z^7 a^{-5} +3 z^5 a^{-5} +3 z^3 a^{-5} +2 z a^{-5} + a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} +2 z^3 a^{-3} -2 z a^{-3} -3 a^{-3} z^{-1} -z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} +2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^{10} a^{-4} -2 z^{10} a^{-6} -5 z^9 a^{-3} -11 z^9 a^{-5} -6 z^9 a^{-7} -6 z^8 a^{-2} -8 z^8 a^{-4} -11 z^8 a^{-6} -9 z^8 a^{-8} -4 z^7 a^{-1} +5 z^7 a^{-3} +17 z^7 a^{-5} -8 z^7 a^{-9} +14 z^6 a^{-2} +21 z^6 a^{-4} +21 z^6 a^{-6} +11 z^6 a^{-8} -4 z^6 a^{-10} -z^6+11 z^5 a^{-1} +6 z^5 a^{-3} -10 z^5 a^{-5} +8 z^5 a^{-7} +12 z^5 a^{-9} -z^5 a^{-11} -9 z^4 a^{-2} -13 z^4 a^{-4} -10 z^4 a^{-6} -3 z^4 a^{-8} +5 z^4 a^{-10} +2 z^4-8 z^3 a^{-1} -6 z^3 a^{-3} +9 z^3 a^{-5} -6 z^3 a^{-9} +z^3 a^{-11} +2 z^2 a^{-2} +5 z^2 a^{-4} +5 z^2 a^{-6} -2 z^2 a^{-10} -z a^{-1} -3 z a^{-3} -4 z a^{-5} -2 z a^{-7} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



