10 73: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 47: | Line 47: | ||
coloured_jones_5 = <math>-q^{40}+4 q^{39}-2 q^{38}-8 q^{37}+5 q^{36}+4 q^{35}+5 q^{34}+11 q^{33}-12 q^{32}-46 q^{31}-9 q^{30}+46 q^{29}+70 q^{28}+58 q^{27}-59 q^{26}-196 q^{25}-173 q^{24}+97 q^{23}+390 q^{22}+391 q^{21}-15 q^{20}-651 q^{19}-914 q^{18}-259 q^{17}+1010 q^{16}+1696 q^{15}+912 q^{14}-1114 q^{13}-2891 q^{12}-2289 q^{11}+925 q^{10}+4257 q^9+4402 q^8+221 q^7-5555 q^6-7475 q^5-2442 q^4+6246 q^3+11080 q^2+6278 q-5903-14951 q^{-1} -11356 q^{-2} +3868 q^{-3} +18322 q^{-4} +17773 q^{-5} -194 q^{-6} -20792 q^{-7} -24457 q^{-8} -5299 q^{-9} +21650 q^{-10} +31323 q^{-11} +11920 q^{-12} -21046 q^{-13} -37171 q^{-14} -19299 q^{-15} +18749 q^{-16} +42086 q^{-17} +26651 q^{-18} -15444 q^{-19} -45385 q^{-20} -33551 q^{-21} +11246 q^{-22} +47465 q^{-23} +39498 q^{-24} -6773 q^{-25} -48110 q^{-26} -44442 q^{-27} +2144 q^{-28} +47752 q^{-29} +48204 q^{-30} +2362 q^{-31} -46231 q^{-32} -50921 q^{-33} -6851 q^{-34} +43817 q^{-35} +52489 q^{-36} +11196 q^{-37} -40256 q^{-38} -52905 q^{-39} -15480 q^{-40} +35634 q^{-41} +52032 q^{-42} +19450 q^{-43} -29929 q^{-44} -49654 q^{-45} -22892 q^{-46} +23333 q^{-47} +45717 q^{-48} +25424 q^{-49} -16288 q^{-50} -40284 q^{-51} -26595 q^{-52} +9323 q^{-53} +33617 q^{-54} +26204 q^{-55} -3051 q^{-56} -26358 q^{-57} -24226 q^{-58} -1794 q^{-59} +19035 q^{-60} +20888 q^{-61} +5075 q^{-62} -12471 q^{-63} -16808 q^{-64} -6549 q^{-65} +7145 q^{-66} +12442 q^{-67} +6661 q^{-68} -3302 q^{-69} -8502 q^{-70} -5779 q^{-71} +923 q^{-72} +5298 q^{-73} +4429 q^{-74} +299 q^{-75} -2979 q^{-76} -3059 q^{-77} -735 q^{-78} +1510 q^{-79} +1909 q^{-80} +717 q^{-81} -662 q^{-82} -1086 q^{-83} -531 q^{-84} +240 q^{-85} +559 q^{-86} +343 q^{-87} -68 q^{-88} -279 q^{-89} -170 q^{-90} +13 q^{-91} +100 q^{-92} +98 q^{-93} +9 q^{-94} -64 q^{-95} -30 q^{-96} +10 q^{-97} +4 q^{-98} +16 q^{-99} +9 q^{-100} -19 q^{-101} -3 q^{-102} +9 q^{-103} -2 q^{-104} +3 q^{-106} -4 q^{-107} - q^{-108} +3 q^{-109} - q^{-110} </math> | |
coloured_jones_5 = <math>-q^{40}+4 q^{39}-2 q^{38}-8 q^{37}+5 q^{36}+4 q^{35}+5 q^{34}+11 q^{33}-12 q^{32}-46 q^{31}-9 q^{30}+46 q^{29}+70 q^{28}+58 q^{27}-59 q^{26}-196 q^{25}-173 q^{24}+97 q^{23}+390 q^{22}+391 q^{21}-15 q^{20}-651 q^{19}-914 q^{18}-259 q^{17}+1010 q^{16}+1696 q^{15}+912 q^{14}-1114 q^{13}-2891 q^{12}-2289 q^{11}+925 q^{10}+4257 q^9+4402 q^8+221 q^7-5555 q^6-7475 q^5-2442 q^4+6246 q^3+11080 q^2+6278 q-5903-14951 q^{-1} -11356 q^{-2} +3868 q^{-3} +18322 q^{-4} +17773 q^{-5} -194 q^{-6} -20792 q^{-7} -24457 q^{-8} -5299 q^{-9} +21650 q^{-10} +31323 q^{-11} +11920 q^{-12} -21046 q^{-13} -37171 q^{-14} -19299 q^{-15} +18749 q^{-16} +42086 q^{-17} +26651 q^{-18} -15444 q^{-19} -45385 q^{-20} -33551 q^{-21} +11246 q^{-22} +47465 q^{-23} +39498 q^{-24} -6773 q^{-25} -48110 q^{-26} -44442 q^{-27} +2144 q^{-28} +47752 q^{-29} +48204 q^{-30} +2362 q^{-31} -46231 q^{-32} -50921 q^{-33} -6851 q^{-34} +43817 q^{-35} +52489 q^{-36} +11196 q^{-37} -40256 q^{-38} -52905 q^{-39} -15480 q^{-40} +35634 q^{-41} +52032 q^{-42} +19450 q^{-43} -29929 q^{-44} -49654 q^{-45} -22892 q^{-46} +23333 q^{-47} +45717 q^{-48} +25424 q^{-49} -16288 q^{-50} -40284 q^{-51} -26595 q^{-52} +9323 q^{-53} +33617 q^{-54} +26204 q^{-55} -3051 q^{-56} -26358 q^{-57} -24226 q^{-58} -1794 q^{-59} +19035 q^{-60} +20888 q^{-61} +5075 q^{-62} -12471 q^{-63} -16808 q^{-64} -6549 q^{-65} +7145 q^{-66} +12442 q^{-67} +6661 q^{-68} -3302 q^{-69} -8502 q^{-70} -5779 q^{-71} +923 q^{-72} +5298 q^{-73} +4429 q^{-74} +299 q^{-75} -2979 q^{-76} -3059 q^{-77} -735 q^{-78} +1510 q^{-79} +1909 q^{-80} +717 q^{-81} -662 q^{-82} -1086 q^{-83} -531 q^{-84} +240 q^{-85} +559 q^{-86} +343 q^{-87} -68 q^{-88} -279 q^{-89} -170 q^{-90} +13 q^{-91} +100 q^{-92} +98 q^{-93} +9 q^{-94} -64 q^{-95} -30 q^{-96} +10 q^{-97} +4 q^{-98} +16 q^{-99} +9 q^{-100} -19 q^{-101} -3 q^{-102} +9 q^{-103} -2 q^{-104} +3 q^{-106} -4 q^{-107} - q^{-108} +3 q^{-109} - q^{-110} </math> | |
||
coloured_jones_6 = <math>q^{57}-4 q^{56}+2 q^{55}+8 q^{54}-5 q^{53}-4 q^{52}-10 q^{51}+13 q^{50}-10 q^{49}+3 q^{48}+60 q^{47}-21 q^{46}-40 q^{45}-80 q^{44}+22 q^{43}-5 q^{42}+61 q^{41}+286 q^{40}+12 q^{39}-178 q^{38}-448 q^{37}-157 q^{36}-135 q^{35}+324 q^{34}+1215 q^{33}+621 q^{32}-195 q^{31}-1615 q^{30}-1455 q^{29}-1478 q^{28}+365 q^{27}+3740 q^{26}+3768 q^{25}+1917 q^{24}-2962 q^{23}-5348 q^{22}-7543 q^{21}-3334 q^{20}+6610 q^{19}+12056 q^{18}+11873 q^{17}+1241 q^{16}-9581 q^{15}-22247 q^{14}-19489 q^{13}+803 q^{12}+21987 q^{11}+34991 q^{10}+23437 q^9-1149 q^8-40193 q^7-54756 q^6-30334 q^5+16101 q^4+63341 q^3+71447 q^2+40497 q-39205-98262 q^{-1} -95029 q^{-2} -29381 q^{-3} +70285 q^{-4} +131292 q^{-5} +122734 q^{-6} +6659 q^{-7} -119636 q^{-8} -175737 q^{-9} -120110 q^{-10} +29122 q^{-11} +169919 q^{-12} +224103 q^{-13} +100467 q^{-14} -92576 q^{-15} -237228 q^{-16} -231371 q^{-17} -60200 q^{-18} +162216 q^{-19} +307836 q^{-20} +215010 q^{-21} -19462 q^{-22} -255369 q^{-23} -326396 q^{-24} -169328 q^{-25} +111873 q^{-26} +350715 q^{-27} +314825 q^{-28} +72448 q^{-29} -233442 q^{-30} -383771 q^{-31} -265787 q^{-32} +42953 q^{-33} +354768 q^{-34} +381039 q^{-35} +155815 q^{-36} -190614 q^{-37} -404833 q^{-38} -334412 q^{-39} -23710 q^{-40} +334111 q^{-41} +414974 q^{-42} +220484 q^{-43} -140794 q^{-44} -399768 q^{-45} -377429 q^{-46} -83357 q^{-47} +296595 q^{-48} +423848 q^{-49} +270326 q^{-50} -83847 q^{-51} -371723 q^{-52} -399730 q^{-53} -141303 q^{-54} +238295 q^{-55} +406706 q^{-56} +308004 q^{-57} -13867 q^{-58} -313815 q^{-59} -396214 q^{-60} -197255 q^{-61} +153731 q^{-62} +353656 q^{-63} +323626 q^{-64} +64742 q^{-65} -221298 q^{-66} -353478 q^{-67} -235511 q^{-68} +52358 q^{-69} +260334 q^{-70} +299383 q^{-71} +129465 q^{-72} -108265 q^{-73} -266947 q^{-74} -233351 q^{-75} -36508 q^{-76} +144548 q^{-77} +229746 q^{-78} +152717 q^{-79} -8930 q^{-80} -157047 q^{-81} -184327 q^{-82} -81848 q^{-83} +43312 q^{-84} +136431 q^{-85} +127673 q^{-86} +45298 q^{-87} -61599 q^{-88} -110955 q^{-89} -77876 q^{-90} -13719 q^{-91} +56081 q^{-92} +77222 q^{-93} +51529 q^{-94} -7043 q^{-95} -47644 q^{-96} -47814 q^{-97} -26772 q^{-98} +10952 q^{-99} +32755 q^{-100} +33170 q^{-101} +9375 q^{-102} -12557 q^{-103} -19668 q^{-104} -18099 q^{-105} -3439 q^{-106} +8773 q^{-107} +14550 q^{-108} +7515 q^{-109} -718 q^{-110} -4963 q^{-111} -7712 q^{-112} -3764 q^{-113} +824 q^{-114} +4639 q^{-115} +3006 q^{-116} +889 q^{-117} -360 q^{-118} -2299 q^{-119} -1624 q^{-120} -432 q^{-121} +1179 q^{-122} +725 q^{-123} +367 q^{-124} +299 q^{-125} -504 q^{-126} -453 q^{-127} -249 q^{-128} +291 q^{-129} +88 q^{-130} +43 q^{-131} +162 q^{-132} -85 q^{-133} -89 q^{-134} -77 q^{-135} +87 q^{-136} -6 q^{-137} -20 q^{-138} +48 q^{-139} -14 q^{-140} -10 q^{-141} -19 q^{-142} +26 q^{-143} -2 q^{-144} -13 q^{-145} +10 q^{-146} -3 q^{-147} -3 q^{-149} +4 q^{-150} + q^{-151} -3 q^{-152} + q^{-153} </math> | |
coloured_jones_6 = <math>q^{57}-4 q^{56}+2 q^{55}+8 q^{54}-5 q^{53}-4 q^{52}-10 q^{51}+13 q^{50}-10 q^{49}+3 q^{48}+60 q^{47}-21 q^{46}-40 q^{45}-80 q^{44}+22 q^{43}-5 q^{42}+61 q^{41}+286 q^{40}+12 q^{39}-178 q^{38}-448 q^{37}-157 q^{36}-135 q^{35}+324 q^{34}+1215 q^{33}+621 q^{32}-195 q^{31}-1615 q^{30}-1455 q^{29}-1478 q^{28}+365 q^{27}+3740 q^{26}+3768 q^{25}+1917 q^{24}-2962 q^{23}-5348 q^{22}-7543 q^{21}-3334 q^{20}+6610 q^{19}+12056 q^{18}+11873 q^{17}+1241 q^{16}-9581 q^{15}-22247 q^{14}-19489 q^{13}+803 q^{12}+21987 q^{11}+34991 q^{10}+23437 q^9-1149 q^8-40193 q^7-54756 q^6-30334 q^5+16101 q^4+63341 q^3+71447 q^2+40497 q-39205-98262 q^{-1} -95029 q^{-2} -29381 q^{-3} +70285 q^{-4} +131292 q^{-5} +122734 q^{-6} +6659 q^{-7} -119636 q^{-8} -175737 q^{-9} -120110 q^{-10} +29122 q^{-11} +169919 q^{-12} +224103 q^{-13} +100467 q^{-14} -92576 q^{-15} -237228 q^{-16} -231371 q^{-17} -60200 q^{-18} +162216 q^{-19} +307836 q^{-20} +215010 q^{-21} -19462 q^{-22} -255369 q^{-23} -326396 q^{-24} -169328 q^{-25} +111873 q^{-26} +350715 q^{-27} +314825 q^{-28} +72448 q^{-29} -233442 q^{-30} -383771 q^{-31} -265787 q^{-32} +42953 q^{-33} +354768 q^{-34} +381039 q^{-35} +155815 q^{-36} -190614 q^{-37} -404833 q^{-38} -334412 q^{-39} -23710 q^{-40} +334111 q^{-41} +414974 q^{-42} +220484 q^{-43} -140794 q^{-44} -399768 q^{-45} -377429 q^{-46} -83357 q^{-47} +296595 q^{-48} +423848 q^{-49} +270326 q^{-50} -83847 q^{-51} -371723 q^{-52} -399730 q^{-53} -141303 q^{-54} +238295 q^{-55} +406706 q^{-56} +308004 q^{-57} -13867 q^{-58} -313815 q^{-59} -396214 q^{-60} -197255 q^{-61} +153731 q^{-62} +353656 q^{-63} +323626 q^{-64} +64742 q^{-65} -221298 q^{-66} -353478 q^{-67} -235511 q^{-68} +52358 q^{-69} +260334 q^{-70} +299383 q^{-71} +129465 q^{-72} -108265 q^{-73} -266947 q^{-74} -233351 q^{-75} -36508 q^{-76} +144548 q^{-77} +229746 q^{-78} +152717 q^{-79} -8930 q^{-80} -157047 q^{-81} -184327 q^{-82} -81848 q^{-83} +43312 q^{-84} +136431 q^{-85} +127673 q^{-86} +45298 q^{-87} -61599 q^{-88} -110955 q^{-89} -77876 q^{-90} -13719 q^{-91} +56081 q^{-92} +77222 q^{-93} +51529 q^{-94} -7043 q^{-95} -47644 q^{-96} -47814 q^{-97} -26772 q^{-98} +10952 q^{-99} +32755 q^{-100} +33170 q^{-101} +9375 q^{-102} -12557 q^{-103} -19668 q^{-104} -18099 q^{-105} -3439 q^{-106} +8773 q^{-107} +14550 q^{-108} +7515 q^{-109} -718 q^{-110} -4963 q^{-111} -7712 q^{-112} -3764 q^{-113} +824 q^{-114} +4639 q^{-115} +3006 q^{-116} +889 q^{-117} -360 q^{-118} -2299 q^{-119} -1624 q^{-120} -432 q^{-121} +1179 q^{-122} +725 q^{-123} +367 q^{-124} +299 q^{-125} -504 q^{-126} -453 q^{-127} -249 q^{-128} +291 q^{-129} +88 q^{-130} +43 q^{-131} +162 q^{-132} -85 q^{-133} -89 q^{-134} -77 q^{-135} +87 q^{-136} -6 q^{-137} -20 q^{-138} +48 q^{-139} -14 q^{-140} -10 q^{-141} -19 q^{-142} +26 q^{-143} -2 q^{-144} -13 q^{-145} +10 q^{-146} -3 q^{-147} -3 q^{-149} +4 q^{-150} + q^{-151} -3 q^{-152} + q^{-153} </math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 54: | Line 54: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 73]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 73]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[16, 14, 17, 13], X[14, 7, 15, 8], X[6, 15, 7, 16], |
X[16, 14, 17, 13], X[14, 7, 15, 8], X[6, 15, 7, 16], |
||
X[20, 17, 1, 18], X[18, 11, 19, 12], X[12, 19, 13, 20]]</nowiki></ |
X[20, 17, 1, 18], X[18, 11, 19, 12], X[12, 19, 13, 20]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 73]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 73]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, |
|||
-9, 10, -8]</nowiki></ |
-9, 10, -8]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 73]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 14, 2, 18, 16, 6, 20, 12]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 73]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 18, 16, 6, 20, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 73]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_73_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 73]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, -2, 1, -2, -1, 3, -2, 3, -4, 3, -4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 73]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 73]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_73_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 73]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 73]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 20 2 3 |
|||
-27 + t - -- + -- + 20 t - 7 t + t |
-27 + t - -- + -- + 20 t - 7 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 73]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + z - z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 73]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 73]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z - z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 73]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 6 10 13 14 13 11 2 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 73]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 73]], KnotSignature[Knot[10, 73]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{83, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 73]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 3 6 10 13 14 13 11 2 |
|||
-7 - q + -- - -- + -- - -- + -- - -- + -- + 4 q - q |
-7 - q + -- - -- + -- - -- + -- - -- + -- + 4 q - q |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></ |
q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 73], Knot[10, 83]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 73], Knot[10, 83]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 73]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 -24 2 3 3 -10 -8 3 2 4 2 |
|||
-q - q + --- + --- - --- - q - q + -- - -- + -- - q + |
-q - q + --- + --- - --- - q - q + -- - -- + -- - q + |
||
22 16 14 6 4 2 |
22 16 14 6 4 2 |
||
Line 105: | Line 181: | ||
4 6 |
4 6 |
||
2 q - q</nowiki></ |
2 q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 73]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 2 2 2 4 2 6 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 73]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 2 2 2 4 2 6 2 4 |
|||
3 a - 4 a + 3 a - a - z + 5 a z - 6 a z + 3 a z - z + |
3 a - 4 a + 3 a - a - z + 5 a z - 6 a z + 3 a z - z + |
||
2 4 4 4 2 6 |
2 4 4 4 2 6 |
||
3 a z - 3 a z + a z</nowiki></ |
3 a z - 3 a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 73]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 3 5 9 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 73]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 3 5 9 2 |
|||
-3 a - 4 a - 3 a - a - a z - 3 a z - 3 a z + a z + 3 z + |
-3 a - 4 a - 3 a - a - a z - 3 a z - 3 a z + a z + 3 z + |
||
Line 133: | Line 219: | ||
5 7 7 7 2 8 4 8 6 8 3 9 5 9 |
5 7 7 7 2 8 4 8 6 8 3 9 5 9 |
||
10 a z + 4 a z + 4 a z + 7 a z + 3 a z + a z + a z</nowiki></ |
10 a z + 4 a z + 4 a z + 7 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 73]], Vassiliev[3][Knot[10, 73]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 73]], Vassiliev[3][Knot[10, 73]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 73]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 7 1 2 1 4 2 6 4 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 148: | Line 244: | ||
3 2 5 3 |
3 2 5 3 |
||
3 q t + q t</nowiki></ |
3 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 73], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 -21 9 17 2 36 50 6 90 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 73], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 3 -21 9 17 2 36 50 6 90 |
|||
-57 + q - --- + q + --- - --- + --- + --- - --- - --- + --- - |
-57 + q - --- + q + --- - --- + --- + --- - --- - --- + --- - |
||
22 20 19 18 17 16 15 14 |
22 20 19 18 17 16 15 14 |
||
Line 162: | Line 263: | ||
24 2 3 4 5 6 7 |
24 2 3 4 5 6 7 |
||
-- + 52 q - q - 24 q + 13 q + 2 q - 4 q + q |
-- + 52 q - q - 24 q + 13 q + 2 q - 4 q + q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 73's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,14,17,13 X14,7,15,8 X6,15,7,16 X20,17,1,18 X18,11,19,12 X12,19,13,20 |
Gauss code | 1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 14 2 18 16 6 20 12 |
Conway Notation | [211,21,2+] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{2, 13}, {1, 6}, {12, 4}, {13, 11}, {8, 12}, {9, 7}, {6, 8}, {7, 10}, {3, 5}, {4, 9}, {5, 2}, {10, 3}, {11, 1}] |
[edit Notes on presentations of 10 73]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 73"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X16,14,17,13 X14,7,15,8 X6,15,7,16 X20,17,1,18 X18,11,19,12 X12,19,13,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 9, -10, 5, -6, 7, -5, 8, -9, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 18 16 6 20 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,21,2+] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 13}, {1, 6}, {12, 4}, {13, 11}, {8, 12}, {9, 7}, {6, 8}, {7, 10}, {3, 5}, {4, 9}, {5, 2}, {10, 3}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 73"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 83, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_83,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 73"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_83,} |
Vassiliev invariants
V2 and V3: | (1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 73. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|