6 2: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 6 | |
|||
<span id="top"></span> |
|||
k = 2 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|- valign=top |
|||
</table> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_crossings = 6 | |
|||
|{{Rolfsen Knot Site Links|n=6|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html}} |
|||
braid_width = 3 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_index = 3 | |
|||
|} |
|||
same_alexander = | |
|||
same_jones = | |
|||
<br style="clear:both" /> |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 44: | Line 35: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^4-q^3-q^2+3 q-1-3 q^{-1} +5 q^{-2} - q^{-3} -5 q^{-4} +6 q^{-5} -6 q^{-7} +6 q^{-8} -5 q^{-10} +4 q^{-11} -2 q^{-13} + q^{-14} </math> | |
|||
coloured_jones_3 = <math>q^9-q^8-q^7+3 q^5-3 q^3-2 q^2+5 q+2-4 q^{-1} -5 q^{-2} +6 q^{-3} +5 q^{-4} -4 q^{-5} -7 q^{-6} +5 q^{-7} +8 q^{-8} -4 q^{-9} -10 q^{-10} +4 q^{-11} +10 q^{-12} -4 q^{-13} -10 q^{-14} +3 q^{-15} +10 q^{-16} -3 q^{-17} -8 q^{-18} +2 q^{-19} +7 q^{-20} -2 q^{-21} -4 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-27} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{16}-q^{15}-q^{14}+4 q^{11}-q^{10}-2 q^9-2 q^8-3 q^7+8 q^6+q^5-q^4-4 q^3-8 q^2+10 q+3+3 q^{-1} -4 q^{-2} -14 q^{-3} +10 q^{-4} +3 q^{-5} +8 q^{-6} -2 q^{-7} -19 q^{-8} +8 q^{-9} +2 q^{-10} +13 q^{-11} -24 q^{-13} +6 q^{-14} +2 q^{-15} +17 q^{-16} + q^{-17} -26 q^{-18} +4 q^{-19} +2 q^{-20} +20 q^{-21} +2 q^{-22} -26 q^{-23} +3 q^{-24} + q^{-25} +18 q^{-26} +3 q^{-27} -22 q^{-28} +2 q^{-29} - q^{-30} +13 q^{-31} +3 q^{-32} -14 q^{-33} +3 q^{-34} -2 q^{-35} +6 q^{-36} +2 q^{-37} -6 q^{-38} +2 q^{-39} - q^{-40} +2 q^{-41} -2 q^{-43} + q^{-44} </math> | |
|||
coloured_jones_5 = <math>q^{25}-q^{24}-q^{23}+q^{20}+3 q^{19}-3 q^{17}-2 q^{16}-2 q^{15}+6 q^{13}+4 q^{12}-q^{11}-4 q^{10}-6 q^9-4 q^8+6 q^7+8 q^6+4 q^5-q^4-9 q^3-10 q^2+2 q+8+9 q^{-1} +6 q^{-2} -7 q^{-3} -15 q^{-4} -4 q^{-5} +4 q^{-6} +12 q^{-7} +13 q^{-8} -2 q^{-9} -16 q^{-10} -13 q^{-11} - q^{-12} +13 q^{-13} +19 q^{-14} +4 q^{-15} -17 q^{-16} -19 q^{-17} -6 q^{-18} +15 q^{-19} +24 q^{-20} +8 q^{-21} -17 q^{-22} -25 q^{-23} -10 q^{-24} +17 q^{-25} +28 q^{-26} +11 q^{-27} -18 q^{-28} -29 q^{-29} -12 q^{-30} +18 q^{-31} +29 q^{-32} +13 q^{-33} -16 q^{-34} -30 q^{-35} -13 q^{-36} +15 q^{-37} +26 q^{-38} +14 q^{-39} -11 q^{-40} -25 q^{-41} -13 q^{-42} +10 q^{-43} +19 q^{-44} +11 q^{-45} -4 q^{-46} -16 q^{-47} -9 q^{-48} +4 q^{-49} +9 q^{-50} +6 q^{-51} -2 q^{-52} -5 q^{-53} -4 q^{-54} +5 q^{-56} + q^{-57} -2 q^{-58} - q^{-61} +2 q^{-62} -2 q^{-64} + q^{-65} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{36}-q^{35}-q^{34}+q^{31}+4 q^{29}-q^{28}-3 q^{27}-2 q^{26}-2 q^{25}-q^{23}+10 q^{22}+2 q^{21}-q^{20}-3 q^{19}-5 q^{18}-5 q^{17}-8 q^{16}+14 q^{15}+6 q^{14}+5 q^{13}+q^{12}-3 q^{11}-10 q^{10}-19 q^9+11 q^8+4 q^7+11 q^6+8 q^5+8 q^4-9 q^3-29 q^2+5 q-6+10 q^{-1} +13 q^{-2} +23 q^{-3} - q^{-4} -32 q^{-5} -20 q^{-7} +2 q^{-8} +13 q^{-9} +38 q^{-10} +10 q^{-11} -29 q^{-12} -2 q^{-13} -33 q^{-14} -9 q^{-15} +9 q^{-16} +50 q^{-17} +21 q^{-18} -24 q^{-19} -2 q^{-20} -44 q^{-21} -19 q^{-22} +4 q^{-23} +60 q^{-24} +29 q^{-25} -19 q^{-26} -3 q^{-27} -53 q^{-28} -26 q^{-29} + q^{-30} +70 q^{-31} +35 q^{-32} -16 q^{-33} -6 q^{-34} -61 q^{-35} -29 q^{-36} + q^{-37} +76 q^{-38} +39 q^{-39} -14 q^{-40} -8 q^{-41} -65 q^{-42} -32 q^{-43} +77 q^{-45} +41 q^{-46} -10 q^{-47} -7 q^{-48} -63 q^{-49} -35 q^{-50} -5 q^{-51} +70 q^{-52} +40 q^{-53} -4 q^{-54} - q^{-55} -53 q^{-56} -34 q^{-57} -11 q^{-58} +54 q^{-59} +32 q^{-60} +7 q^{-62} -36 q^{-63} -26 q^{-64} -13 q^{-65} +33 q^{-66} +18 q^{-67} - q^{-68} +11 q^{-69} -17 q^{-70} -14 q^{-71} -9 q^{-72} +16 q^{-73} +6 q^{-74} -3 q^{-75} +7 q^{-76} -6 q^{-77} -4 q^{-78} -4 q^{-79} +7 q^{-80} -3 q^{-82} +4 q^{-83} -2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math>q^{49}-q^{48}-q^{47}+q^{44}+q^{42}+3 q^{41}-q^{40}-3 q^{39}-2 q^{38}-3 q^{37}+q^{36}+q^{34}+9 q^{33}+3 q^{32}-q^{31}-3 q^{30}-8 q^{29}-3 q^{28}-5 q^{27}-4 q^{26}+12 q^{25}+9 q^{24}+7 q^{23}+5 q^{22}-9 q^{21}-5 q^{20}-12 q^{19}-16 q^{18}+6 q^{17}+7 q^{16}+13 q^{15}+18 q^{14}+q^{13}+3 q^{12}-12 q^{11}-28 q^{10}-6 q^9-7 q^8+6 q^7+25 q^6+14 q^5+21 q^4-29 q^2-14 q-25-15 q^{-1} +19 q^{-2} +19 q^{-3} +40 q^{-4} +22 q^{-5} -18 q^{-6} -11 q^{-7} -41 q^{-8} -38 q^{-9} +2 q^{-10} +12 q^{-11} +51 q^{-12} +46 q^{-13} + q^{-14} - q^{-15} -48 q^{-16} -59 q^{-17} -17 q^{-18} -4 q^{-19} +55 q^{-20} +67 q^{-21} +20 q^{-22} +14 q^{-23} -51 q^{-24} -75 q^{-25} -36 q^{-26} -19 q^{-27} +55 q^{-28} +82 q^{-29} +38 q^{-30} +27 q^{-31} -52 q^{-32} -90 q^{-33} -49 q^{-34} -30 q^{-35} +57 q^{-36} +95 q^{-37} +52 q^{-38} +34 q^{-39} -56 q^{-40} -102 q^{-41} -58 q^{-42} -34 q^{-43} +60 q^{-44} +106 q^{-45} +61 q^{-46} +35 q^{-47} -61 q^{-48} -112 q^{-49} -63 q^{-50} -36 q^{-51} +63 q^{-52} +114 q^{-53} +66 q^{-54} +36 q^{-55} -63 q^{-56} -115 q^{-57} -68 q^{-58} -40 q^{-59} +61 q^{-60} +116 q^{-61} +71 q^{-62} +41 q^{-63} -57 q^{-64} -111 q^{-65} -71 q^{-66} -47 q^{-67} +49 q^{-68} +107 q^{-69} +72 q^{-70} +49 q^{-71} -43 q^{-72} -94 q^{-73} -66 q^{-74} -52 q^{-75} +28 q^{-76} +83 q^{-77} +63 q^{-78} +50 q^{-79} -23 q^{-80} -67 q^{-81} -47 q^{-82} -47 q^{-83} +9 q^{-84} +51 q^{-85} +39 q^{-86} +41 q^{-87} -8 q^{-88} -35 q^{-89} -24 q^{-90} -31 q^{-91} +2 q^{-92} +22 q^{-93} +14 q^{-94} +23 q^{-95} + q^{-96} -16 q^{-97} -8 q^{-98} -13 q^{-99} +3 q^{-100} +7 q^{-101} - q^{-102} +10 q^{-103} +2 q^{-104} -6 q^{-105} -2 q^{-106} -4 q^{-107} +3 q^{-108} +2 q^{-109} -4 q^{-110} +3 q^{-111} +2 q^{-112} -2 q^{-113} - q^{-115} +2 q^{-116} -2 q^{-118} + q^{-119} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[6, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[6, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></ |
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[6, 2]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[6, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[6, 2]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[6, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 12, 2, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[6, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[6, 2]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[6, 2]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:6_2_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[6, 2]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {3, 4}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[6, 2]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 |
|||
-3 - t + - + 3 t - t |
-3 - t + - + 3 t - t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[6, 2]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 - z - z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[6, 2]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - z - z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[6, 2]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 2 2 2 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 2]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{11, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[6, 2]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 2 2 2 |
|||
-1 + q - -- + -- - -- + - + q |
-1 + q - -- + -- - -- + - + q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -8 -4 -2 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
1 + q - q - q + q + q + q</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 2]}</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 3 5 2 2 2 4 2 6 2 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[6, 2]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -8 -4 -2 2 4 |
|||
1 + q - q - q + q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[6, 2]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 2 4 |
|||
2 - 2 a + a + z - 3 a z + a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[6, 2]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 3 5 2 2 2 4 2 6 2 |
|||
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z - |
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z - |
||
3 5 3 4 2 4 4 4 5 3 5 |
3 5 3 4 2 4 4 4 5 3 5 |
||
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></ |
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[6, 2]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 1 1 1 1 1 1 1 t |
|||
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - + |
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - + |
||
q 11 4 9 3 7 3 7 2 5 2 5 3 q |
q 11 4 9 3 7 3 7 2 5 2 5 3 q |
||
Line 101: | Line 204: | ||
3 2 |
3 2 |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[6, 2], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 2 4 5 6 6 6 5 -3 5 3 |
|||
-1 + q - --- + --- - --- + -- - -- + -- - -- - q + -- - - + 3 q - |
|||
13 11 10 8 7 5 4 2 q |
|||
q q q q q q q q |
|||
2 3 4 |
|||
q - q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research. The bowline knot of practical knot tying deforms to 6_2. |
Knot presentations
Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7 |
Gauss code | -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5 |
Dowker-Thistlethwaite code | 4 8 10 12 2 6 |
Conway Notation | [312] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 6, width is 3, Braid index is 3 |
[{8, 2}, {1, 6}, {7, 3}, {2, 4}, {6, 8}, {3, 5}, {4, 7}, {5, 1}] |
[edit Notes on presentations of 6 2]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["6 2"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 12 2 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[312] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 6, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{8, 2}, {1, 6}, {7, 3}, {2, 4}, {6, 8}, {3, 5}, {4, 7}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["6 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["6 2"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|