6 2: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 6 |
<!-- provide an anchor so we can return to the top of the page -->
k = 2 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=6|k=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-5,3,-4,2,-6,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 6 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 6, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>&chi;</td></tr>
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>&chi;</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 67: Line 35:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^4-q^3-q^2+3 q-1-3 q^{-1} +5 q^{-2} - q^{-3} -5 q^{-4} +6 q^{-5} -6 q^{-7} +6 q^{-8} -5 q^{-10} +4 q^{-11} -2 q^{-13} + q^{-14} </math> |

coloured_jones_3 = <math>q^9-q^8-q^7+3 q^5-3 q^3-2 q^2+5 q+2-4 q^{-1} -5 q^{-2} +6 q^{-3} +5 q^{-4} -4 q^{-5} -7 q^{-6} +5 q^{-7} +8 q^{-8} -4 q^{-9} -10 q^{-10} +4 q^{-11} +10 q^{-12} -4 q^{-13} -10 q^{-14} +3 q^{-15} +10 q^{-16} -3 q^{-17} -8 q^{-18} +2 q^{-19} +7 q^{-20} -2 q^{-21} -4 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-27} </math> |
{{Display Coloured Jones|J2=<math>q^4-q^3-q^2+3 q-1-3 q^{-1} +5 q^{-2} - q^{-3} -5 q^{-4} +6 q^{-5} -6 q^{-7} +6 q^{-8} -5 q^{-10} +4 q^{-11} -2 q^{-13} + q^{-14} </math>|J3=<math>q^9-q^8-q^7+3 q^5-3 q^3-2 q^2+5 q+2-4 q^{-1} -5 q^{-2} +6 q^{-3} +5 q^{-4} -4 q^{-5} -7 q^{-6} +5 q^{-7} +8 q^{-8} -4 q^{-9} -10 q^{-10} +4 q^{-11} +10 q^{-12} -4 q^{-13} -10 q^{-14} +3 q^{-15} +10 q^{-16} -3 q^{-17} -8 q^{-18} +2 q^{-19} +7 q^{-20} -2 q^{-21} -4 q^{-22} + q^{-23} +2 q^{-24} -2 q^{-26} + q^{-27} </math>|J4=<math>q^{16}-q^{15}-q^{14}+4 q^{11}-q^{10}-2 q^9-2 q^8-3 q^7+8 q^6+q^5-q^4-4 q^3-8 q^2+10 q+3+3 q^{-1} -4 q^{-2} -14 q^{-3} +10 q^{-4} +3 q^{-5} +8 q^{-6} -2 q^{-7} -19 q^{-8} +8 q^{-9} +2 q^{-10} +13 q^{-11} -24 q^{-13} +6 q^{-14} +2 q^{-15} +17 q^{-16} + q^{-17} -26 q^{-18} +4 q^{-19} +2 q^{-20} +20 q^{-21} +2 q^{-22} -26 q^{-23} +3 q^{-24} + q^{-25} +18 q^{-26} +3 q^{-27} -22 q^{-28} +2 q^{-29} - q^{-30} +13 q^{-31} +3 q^{-32} -14 q^{-33} +3 q^{-34} -2 q^{-35} +6 q^{-36} +2 q^{-37} -6 q^{-38} +2 q^{-39} - q^{-40} +2 q^{-41} -2 q^{-43} + q^{-44} </math>|J5=<math>q^{25}-q^{24}-q^{23}+q^{20}+3 q^{19}-3 q^{17}-2 q^{16}-2 q^{15}+6 q^{13}+4 q^{12}-q^{11}-4 q^{10}-6 q^9-4 q^8+6 q^7+8 q^6+4 q^5-q^4-9 q^3-10 q^2+2 q+8+9 q^{-1} +6 q^{-2} -7 q^{-3} -15 q^{-4} -4 q^{-5} +4 q^{-6} +12 q^{-7} +13 q^{-8} -2 q^{-9} -16 q^{-10} -13 q^{-11} - q^{-12} +13 q^{-13} +19 q^{-14} +4 q^{-15} -17 q^{-16} -19 q^{-17} -6 q^{-18} +15 q^{-19} +24 q^{-20} +8 q^{-21} -17 q^{-22} -25 q^{-23} -10 q^{-24} +17 q^{-25} +28 q^{-26} +11 q^{-27} -18 q^{-28} -29 q^{-29} -12 q^{-30} +18 q^{-31} +29 q^{-32} +13 q^{-33} -16 q^{-34} -30 q^{-35} -13 q^{-36} +15 q^{-37} +26 q^{-38} +14 q^{-39} -11 q^{-40} -25 q^{-41} -13 q^{-42} +10 q^{-43} +19 q^{-44} +11 q^{-45} -4 q^{-46} -16 q^{-47} -9 q^{-48} +4 q^{-49} +9 q^{-50} +6 q^{-51} -2 q^{-52} -5 q^{-53} -4 q^{-54} +5 q^{-56} + q^{-57} -2 q^{-58} - q^{-61} +2 q^{-62} -2 q^{-64} + q^{-65} </math>|J6=<math>q^{36}-q^{35}-q^{34}+q^{31}+4 q^{29}-q^{28}-3 q^{27}-2 q^{26}-2 q^{25}-q^{23}+10 q^{22}+2 q^{21}-q^{20}-3 q^{19}-5 q^{18}-5 q^{17}-8 q^{16}+14 q^{15}+6 q^{14}+5 q^{13}+q^{12}-3 q^{11}-10 q^{10}-19 q^9+11 q^8+4 q^7+11 q^6+8 q^5+8 q^4-9 q^3-29 q^2+5 q-6+10 q^{-1} +13 q^{-2} +23 q^{-3} - q^{-4} -32 q^{-5} -20 q^{-7} +2 q^{-8} +13 q^{-9} +38 q^{-10} +10 q^{-11} -29 q^{-12} -2 q^{-13} -33 q^{-14} -9 q^{-15} +9 q^{-16} +50 q^{-17} +21 q^{-18} -24 q^{-19} -2 q^{-20} -44 q^{-21} -19 q^{-22} +4 q^{-23} +60 q^{-24} +29 q^{-25} -19 q^{-26} -3 q^{-27} -53 q^{-28} -26 q^{-29} + q^{-30} +70 q^{-31} +35 q^{-32} -16 q^{-33} -6 q^{-34} -61 q^{-35} -29 q^{-36} + q^{-37} +76 q^{-38} +39 q^{-39} -14 q^{-40} -8 q^{-41} -65 q^{-42} -32 q^{-43} +77 q^{-45} +41 q^{-46} -10 q^{-47} -7 q^{-48} -63 q^{-49} -35 q^{-50} -5 q^{-51} +70 q^{-52} +40 q^{-53} -4 q^{-54} - q^{-55} -53 q^{-56} -34 q^{-57} -11 q^{-58} +54 q^{-59} +32 q^{-60} +7 q^{-62} -36 q^{-63} -26 q^{-64} -13 q^{-65} +33 q^{-66} +18 q^{-67} - q^{-68} +11 q^{-69} -17 q^{-70} -14 q^{-71} -9 q^{-72} +16 q^{-73} +6 q^{-74} -3 q^{-75} +7 q^{-76} -6 q^{-77} -4 q^{-78} -4 q^{-79} +7 q^{-80} -3 q^{-82} +4 q^{-83} -2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math>|J7=<math>q^{49}-q^{48}-q^{47}+q^{44}+q^{42}+3 q^{41}-q^{40}-3 q^{39}-2 q^{38}-3 q^{37}+q^{36}+q^{34}+9 q^{33}+3 q^{32}-q^{31}-3 q^{30}-8 q^{29}-3 q^{28}-5 q^{27}-4 q^{26}+12 q^{25}+9 q^{24}+7 q^{23}+5 q^{22}-9 q^{21}-5 q^{20}-12 q^{19}-16 q^{18}+6 q^{17}+7 q^{16}+13 q^{15}+18 q^{14}+q^{13}+3 q^{12}-12 q^{11}-28 q^{10}-6 q^9-7 q^8+6 q^7+25 q^6+14 q^5+21 q^4-29 q^2-14 q-25-15 q^{-1} +19 q^{-2} +19 q^{-3} +40 q^{-4} +22 q^{-5} -18 q^{-6} -11 q^{-7} -41 q^{-8} -38 q^{-9} +2 q^{-10} +12 q^{-11} +51 q^{-12} +46 q^{-13} + q^{-14} - q^{-15} -48 q^{-16} -59 q^{-17} -17 q^{-18} -4 q^{-19} +55 q^{-20} +67 q^{-21} +20 q^{-22} +14 q^{-23} -51 q^{-24} -75 q^{-25} -36 q^{-26} -19 q^{-27} +55 q^{-28} +82 q^{-29} +38 q^{-30} +27 q^{-31} -52 q^{-32} -90 q^{-33} -49 q^{-34} -30 q^{-35} +57 q^{-36} +95 q^{-37} +52 q^{-38} +34 q^{-39} -56 q^{-40} -102 q^{-41} -58 q^{-42} -34 q^{-43} +60 q^{-44} +106 q^{-45} +61 q^{-46} +35 q^{-47} -61 q^{-48} -112 q^{-49} -63 q^{-50} -36 q^{-51} +63 q^{-52} +114 q^{-53} +66 q^{-54} +36 q^{-55} -63 q^{-56} -115 q^{-57} -68 q^{-58} -40 q^{-59} +61 q^{-60} +116 q^{-61} +71 q^{-62} +41 q^{-63} -57 q^{-64} -111 q^{-65} -71 q^{-66} -47 q^{-67} +49 q^{-68} +107 q^{-69} +72 q^{-70} +49 q^{-71} -43 q^{-72} -94 q^{-73} -66 q^{-74} -52 q^{-75} +28 q^{-76} +83 q^{-77} +63 q^{-78} +50 q^{-79} -23 q^{-80} -67 q^{-81} -47 q^{-82} -47 q^{-83} +9 q^{-84} +51 q^{-85} +39 q^{-86} +41 q^{-87} -8 q^{-88} -35 q^{-89} -24 q^{-90} -31 q^{-91} +2 q^{-92} +22 q^{-93} +14 q^{-94} +23 q^{-95} + q^{-96} -16 q^{-97} -8 q^{-98} -13 q^{-99} +3 q^{-100} +7 q^{-101} - q^{-102} +10 q^{-103} +2 q^{-104} -6 q^{-105} -2 q^{-106} -4 q^{-107} +3 q^{-108} +2 q^{-109} -4 q^{-110} +3 q^{-111} +2 q^{-112} -2 q^{-113} - q^{-115} +2 q^{-116} -2 q^{-118} + q^{-119} </math>}}
coloured_jones_4 = <math>q^{16}-q^{15}-q^{14}+4 q^{11}-q^{10}-2 q^9-2 q^8-3 q^7+8 q^6+q^5-q^4-4 q^3-8 q^2+10 q+3+3 q^{-1} -4 q^{-2} -14 q^{-3} +10 q^{-4} +3 q^{-5} +8 q^{-6} -2 q^{-7} -19 q^{-8} +8 q^{-9} +2 q^{-10} +13 q^{-11} -24 q^{-13} +6 q^{-14} +2 q^{-15} +17 q^{-16} + q^{-17} -26 q^{-18} +4 q^{-19} +2 q^{-20} +20 q^{-21} +2 q^{-22} -26 q^{-23} +3 q^{-24} + q^{-25} +18 q^{-26} +3 q^{-27} -22 q^{-28} +2 q^{-29} - q^{-30} +13 q^{-31} +3 q^{-32} -14 q^{-33} +3 q^{-34} -2 q^{-35} +6 q^{-36} +2 q^{-37} -6 q^{-38} +2 q^{-39} - q^{-40} +2 q^{-41} -2 q^{-43} + q^{-44} </math> |

coloured_jones_5 = <math>q^{25}-q^{24}-q^{23}+q^{20}+3 q^{19}-3 q^{17}-2 q^{16}-2 q^{15}+6 q^{13}+4 q^{12}-q^{11}-4 q^{10}-6 q^9-4 q^8+6 q^7+8 q^6+4 q^5-q^4-9 q^3-10 q^2+2 q+8+9 q^{-1} +6 q^{-2} -7 q^{-3} -15 q^{-4} -4 q^{-5} +4 q^{-6} +12 q^{-7} +13 q^{-8} -2 q^{-9} -16 q^{-10} -13 q^{-11} - q^{-12} +13 q^{-13} +19 q^{-14} +4 q^{-15} -17 q^{-16} -19 q^{-17} -6 q^{-18} +15 q^{-19} +24 q^{-20} +8 q^{-21} -17 q^{-22} -25 q^{-23} -10 q^{-24} +17 q^{-25} +28 q^{-26} +11 q^{-27} -18 q^{-28} -29 q^{-29} -12 q^{-30} +18 q^{-31} +29 q^{-32} +13 q^{-33} -16 q^{-34} -30 q^{-35} -13 q^{-36} +15 q^{-37} +26 q^{-38} +14 q^{-39} -11 q^{-40} -25 q^{-41} -13 q^{-42} +10 q^{-43} +19 q^{-44} +11 q^{-45} -4 q^{-46} -16 q^{-47} -9 q^{-48} +4 q^{-49} +9 q^{-50} +6 q^{-51} -2 q^{-52} -5 q^{-53} -4 q^{-54} +5 q^{-56} + q^{-57} -2 q^{-58} - q^{-61} +2 q^{-62} -2 q^{-64} + q^{-65} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{36}-q^{35}-q^{34}+q^{31}+4 q^{29}-q^{28}-3 q^{27}-2 q^{26}-2 q^{25}-q^{23}+10 q^{22}+2 q^{21}-q^{20}-3 q^{19}-5 q^{18}-5 q^{17}-8 q^{16}+14 q^{15}+6 q^{14}+5 q^{13}+q^{12}-3 q^{11}-10 q^{10}-19 q^9+11 q^8+4 q^7+11 q^6+8 q^5+8 q^4-9 q^3-29 q^2+5 q-6+10 q^{-1} +13 q^{-2} +23 q^{-3} - q^{-4} -32 q^{-5} -20 q^{-7} +2 q^{-8} +13 q^{-9} +38 q^{-10} +10 q^{-11} -29 q^{-12} -2 q^{-13} -33 q^{-14} -9 q^{-15} +9 q^{-16} +50 q^{-17} +21 q^{-18} -24 q^{-19} -2 q^{-20} -44 q^{-21} -19 q^{-22} +4 q^{-23} +60 q^{-24} +29 q^{-25} -19 q^{-26} -3 q^{-27} -53 q^{-28} -26 q^{-29} + q^{-30} +70 q^{-31} +35 q^{-32} -16 q^{-33} -6 q^{-34} -61 q^{-35} -29 q^{-36} + q^{-37} +76 q^{-38} +39 q^{-39} -14 q^{-40} -8 q^{-41} -65 q^{-42} -32 q^{-43} +77 q^{-45} +41 q^{-46} -10 q^{-47} -7 q^{-48} -63 q^{-49} -35 q^{-50} -5 q^{-51} +70 q^{-52} +40 q^{-53} -4 q^{-54} - q^{-55} -53 q^{-56} -34 q^{-57} -11 q^{-58} +54 q^{-59} +32 q^{-60} +7 q^{-62} -36 q^{-63} -26 q^{-64} -13 q^{-65} +33 q^{-66} +18 q^{-67} - q^{-68} +11 q^{-69} -17 q^{-70} -14 q^{-71} -9 q^{-72} +16 q^{-73} +6 q^{-74} -3 q^{-75} +7 q^{-76} -6 q^{-77} -4 q^{-78} -4 q^{-79} +7 q^{-80} -3 q^{-82} +4 q^{-83} -2 q^{-84} - q^{-86} +2 q^{-87} -2 q^{-89} + q^{-90} </math> |

coloured_jones_7 = <math>q^{49}-q^{48}-q^{47}+q^{44}+q^{42}+3 q^{41}-q^{40}-3 q^{39}-2 q^{38}-3 q^{37}+q^{36}+q^{34}+9 q^{33}+3 q^{32}-q^{31}-3 q^{30}-8 q^{29}-3 q^{28}-5 q^{27}-4 q^{26}+12 q^{25}+9 q^{24}+7 q^{23}+5 q^{22}-9 q^{21}-5 q^{20}-12 q^{19}-16 q^{18}+6 q^{17}+7 q^{16}+13 q^{15}+18 q^{14}+q^{13}+3 q^{12}-12 q^{11}-28 q^{10}-6 q^9-7 q^8+6 q^7+25 q^6+14 q^5+21 q^4-29 q^2-14 q-25-15 q^{-1} +19 q^{-2} +19 q^{-3} +40 q^{-4} +22 q^{-5} -18 q^{-6} -11 q^{-7} -41 q^{-8} -38 q^{-9} +2 q^{-10} +12 q^{-11} +51 q^{-12} +46 q^{-13} + q^{-14} - q^{-15} -48 q^{-16} -59 q^{-17} -17 q^{-18} -4 q^{-19} +55 q^{-20} +67 q^{-21} +20 q^{-22} +14 q^{-23} -51 q^{-24} -75 q^{-25} -36 q^{-26} -19 q^{-27} +55 q^{-28} +82 q^{-29} +38 q^{-30} +27 q^{-31} -52 q^{-32} -90 q^{-33} -49 q^{-34} -30 q^{-35} +57 q^{-36} +95 q^{-37} +52 q^{-38} +34 q^{-39} -56 q^{-40} -102 q^{-41} -58 q^{-42} -34 q^{-43} +60 q^{-44} +106 q^{-45} +61 q^{-46} +35 q^{-47} -61 q^{-48} -112 q^{-49} -63 q^{-50} -36 q^{-51} +63 q^{-52} +114 q^{-53} +66 q^{-54} +36 q^{-55} -63 q^{-56} -115 q^{-57} -68 q^{-58} -40 q^{-59} +61 q^{-60} +116 q^{-61} +71 q^{-62} +41 q^{-63} -57 q^{-64} -111 q^{-65} -71 q^{-66} -47 q^{-67} +49 q^{-68} +107 q^{-69} +72 q^{-70} +49 q^{-71} -43 q^{-72} -94 q^{-73} -66 q^{-74} -52 q^{-75} +28 q^{-76} +83 q^{-77} +63 q^{-78} +50 q^{-79} -23 q^{-80} -67 q^{-81} -47 q^{-82} -47 q^{-83} +9 q^{-84} +51 q^{-85} +39 q^{-86} +41 q^{-87} -8 q^{-88} -35 q^{-89} -24 q^{-90} -31 q^{-91} +2 q^{-92} +22 q^{-93} +14 q^{-94} +23 q^{-95} + q^{-96} -16 q^{-97} -8 q^{-98} -13 q^{-99} +3 q^{-100} +7 q^{-101} - q^{-102} +10 q^{-103} +2 q^{-104} -6 q^{-105} -2 q^{-106} -4 q^{-107} +3 q^{-108} +2 q^{-109} -4 q^{-110} +3 q^{-111} +2 q^{-112} -2 q^{-113} - q^{-115} +2 q^{-116} -2 q^{-118} + q^{-119} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[6, 2]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[6, 2]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></pre></td></tr>
X[7, 12, 8, 1], X[11, 6, 12, 7]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[6, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[6, 2]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[6, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 10, 12, 2, 6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[6, 2]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[6, 2]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[6, 2]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 12, 2, 6]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[6, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:6_2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[6, 2]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[6, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {3, 4}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[6, 2]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[6, 2]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[6, 2]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:6_2_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[6, 2]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {3, 4}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[6, 2]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2
-3 - t + - + 3 t - t
-3 - t + - + 3 t - t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[6, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[6, 2]][z]</nowiki></code></td></tr>
1 - z - z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 - z - z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{11, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[6, 2]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 2]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[6, 2]], KnotSignature[Knot[6, 2]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{11, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[6, 2]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 2 2 2
-1 + q - -- + -- - -- + - + q
-1 + q - -- + -- - -- + - + q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[6, 2]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[6, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -8 -4 -2 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 2]}</nowiki></code></td></tr>
1 + q - q - q + q + q + q</nowiki></pre></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[6, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 2 2 2 4 2 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[6, 2]][q]</nowiki></code></td></tr>
2 - 2 a + a + z - 3 a z + a z - a z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[6, 2]][a, z]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 3 5 2 2 2 4 2 6 2
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -8 -4 -2 2 4
1 + q - q - q + q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[6, 2]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 2 4
2 - 2 a + a + z - 3 a z + a z - a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[6, 2]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 3 5 2 2 2 4 2 6 2
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z -
2 + 2 a + a - a z - a z - 3 z - 6 a z - 2 a z + a z -
3 5 3 4 2 4 4 4 5 3 5
3 5 3 4 2 4 4 4 5 3 5
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
2 a z + 2 a z + z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[6, 2]], Vassiliev[3][Knot[6, 2]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[6, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 1 1 1 1 1 1 1 t
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[6, 2]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 1 1 1 1 1 1 1 t
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - +
q + - + ------ + ----- + ----- + ----- + ----- + ---- + ---- + - +
q 11 4 9 3 7 3 7 2 5 2 5 3 q
q 11 4 9 3 7 3 7 2 5 2 5 3 q
Line 154: Line 204:
3 2
3 2
q t</nowiki></pre></td></tr>
q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[6, 2], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 2 4 5 6 6 6 5 -3 5 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[6, 2], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 2 4 5 6 6 6 5 -3 5 3
-1 + q - --- + --- - --- + -- - -- + -- - -- - q + -- - - + 3 q -
-1 + q - --- + --- - --- + -- - -- + -- - -- - q + -- - - + 3 q -
13 11 10 8 7 5 4 2 q
13 11 10 8 7 5 4 2 q
Line 163: Line 217:
2 3 4
2 3 4
q - q + q</nowiki></pre></td></tr>
q - q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:00, 1 September 2005

6 1.gif

6_1

6 3.gif

6_3

6 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 2 at Knotilus!

Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

The bowline knot of practical knot tying deforms to 6_2.

The Miller Institute Mug [1]
Simple square depiction
3D depiction

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 10 12 2 6
Conway Notation [312]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 6, width is 3,

Braid index is 3

6 2 ML.gif 6 2 AP.gif
[{8, 2}, {1, 6}, {7, 3}, {2, 4}, {6, 8}, {3, 5}, {4, 7}, {5, 1}]

[edit Notes on presentations of 6 2]

Knot 6_2.
A graph, knot 6_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.40083
A-Polynomial See Data:6 2/A-polynomial

[edit Notes for 6 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 6 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
3      11
1       0
-1    21 1
-3   11  0
-5  11   0
-7 11    0
-9 1     -1
-111      1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials