6 3: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 6 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 3 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,4,-5,6,-2,3,-4,5,-3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=6|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,4,-5,6,-2,3,-4,5,-3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 6 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 6, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[K11n12]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n12]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=9.09091%>3</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 67: | Line 35: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^9-2 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -2 q^{-8} + q^{-9} </math> | |
|||
coloured_jones_3 = <math>-q^{18}+2 q^{17}+q^{16}-2 q^{15}-4 q^{14}+3 q^{13}+7 q^{12}-4 q^{11}-10 q^{10}+3 q^9+14 q^8-3 q^7-16 q^6+q^5+21 q^4-2 q^3-20 q^2-q+23- q^{-1} -20 q^{-2} -2 q^{-3} +21 q^{-4} + q^{-5} -16 q^{-6} -3 q^{-7} +14 q^{-8} +3 q^{-9} -10 q^{-10} -4 q^{-11} +7 q^{-12} +3 q^{-13} -4 q^{-14} -2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^9-2 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -2 q^{-8} + q^{-9} </math>|J3=<math>-q^{18}+2 q^{17}+q^{16}-2 q^{15}-4 q^{14}+3 q^{13}+7 q^{12}-4 q^{11}-10 q^{10}+3 q^9+14 q^8-3 q^7-16 q^6+q^5+21 q^4-2 q^3-20 q^2-q+23- q^{-1} -20 q^{-2} -2 q^{-3} +21 q^{-4} + q^{-5} -16 q^{-6} -3 q^{-7} +14 q^{-8} +3 q^{-9} -10 q^{-10} -4 q^{-11} +7 q^{-12} +3 q^{-13} -4 q^{-14} -2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} </math>|J4=<math>q^{30}-2 q^{29}-q^{28}+2 q^{27}+q^{26}+5 q^{25}-7 q^{24}-5 q^{23}+2 q^{22}+3 q^{21}+17 q^{20}-12 q^{19}-14 q^{18}-3 q^{17}+4 q^{16}+34 q^{15}-12 q^{14}-22 q^{13}-13 q^{12}+2 q^{11}+52 q^{10}-9 q^9-28 q^8-23 q^7-q^6+64 q^5-6 q^4-30 q^3-29 q^2-4 q+69-4 q^{-1} -29 q^{-2} -30 q^{-3} -6 q^{-4} +64 q^{-5} - q^{-6} -23 q^{-7} -28 q^{-8} -9 q^{-9} +52 q^{-10} +2 q^{-11} -13 q^{-12} -22 q^{-13} -12 q^{-14} +34 q^{-15} +4 q^{-16} -3 q^{-17} -14 q^{-18} -12 q^{-19} +17 q^{-20} +3 q^{-21} +2 q^{-22} -5 q^{-23} -7 q^{-24} +5 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math>|J5=<math>-q^{45}+2 q^{44}+q^{43}-2 q^{42}-q^{41}-2 q^{40}-q^{39}+5 q^{38}+7 q^{37}-2 q^{36}-6 q^{35}-9 q^{34}-5 q^{33}+9 q^{32}+18 q^{31}+10 q^{30}-10 q^{29}-25 q^{28}-19 q^{27}+6 q^{26}+33 q^{25}+32 q^{24}-2 q^{23}-41 q^{22}-43 q^{21}-6 q^{20}+43 q^{19}+61 q^{18}+13 q^{17}-49 q^{16}-68 q^{15}-25 q^{14}+49 q^{13}+84 q^{12}+30 q^{11}-53 q^{10}-85 q^9-41 q^8+49 q^7+100 q^6+41 q^5-53 q^4-93 q^3-50 q^2+47 q+105+47 q^{-1} -50 q^{-2} -93 q^{-3} -53 q^{-4} +41 q^{-5} +100 q^{-6} +49 q^{-7} -41 q^{-8} -85 q^{-9} -53 q^{-10} +30 q^{-11} +84 q^{-12} +49 q^{-13} -25 q^{-14} -68 q^{-15} -49 q^{-16} +13 q^{-17} +61 q^{-18} +43 q^{-19} -6 q^{-20} -43 q^{-21} -41 q^{-22} -2 q^{-23} +32 q^{-24} +33 q^{-25} +6 q^{-26} -19 q^{-27} -25 q^{-28} -10 q^{-29} +10 q^{-30} +18 q^{-31} +9 q^{-32} -5 q^{-33} -9 q^{-34} -6 q^{-35} -2 q^{-36} +7 q^{-37} +5 q^{-38} - q^{-39} -2 q^{-40} - q^{-41} -2 q^{-42} + q^{-43} +2 q^{-44} - q^{-45} </math>|J6=<math>q^{63}-2 q^{62}-q^{61}+2 q^{60}+q^{59}+2 q^{58}-2 q^{57}+3 q^{56}-7 q^{55}-7 q^{54}+5 q^{53}+5 q^{52}+9 q^{51}+9 q^{49}-20 q^{48}-22 q^{47}+9 q^{45}+24 q^{44}+13 q^{43}+34 q^{42}-33 q^{41}-51 q^{40}-25 q^{39}-3 q^{38}+37 q^{37}+40 q^{36}+84 q^{35}-29 q^{34}-78 q^{33}-69 q^{32}-38 q^{31}+32 q^{30}+68 q^{29}+153 q^{28}-4 q^{27}-89 q^{26}-115 q^{25}-88 q^{24}+9 q^{23}+85 q^{22}+220 q^{21}+31 q^{20}-85 q^{19}-150 q^{18}-134 q^{17}-20 q^{16}+91 q^{15}+271 q^{14}+60 q^{13}-75 q^{12}-172 q^{11}-164 q^{10}-43 q^9+90 q^8+301 q^7+77 q^6-66 q^5-180 q^4-178 q^3-57 q^2+86 q+311+86 q^{-1} -57 q^{-2} -178 q^{-3} -180 q^{-4} -66 q^{-5} +77 q^{-6} +301 q^{-7} +90 q^{-8} -43 q^{-9} -164 q^{-10} -172 q^{-11} -75 q^{-12} +60 q^{-13} +271 q^{-14} +91 q^{-15} -20 q^{-16} -134 q^{-17} -150 q^{-18} -85 q^{-19} +31 q^{-20} +220 q^{-21} +85 q^{-22} +9 q^{-23} -88 q^{-24} -115 q^{-25} -89 q^{-26} -4 q^{-27} +153 q^{-28} +68 q^{-29} +32 q^{-30} -38 q^{-31} -69 q^{-32} -78 q^{-33} -29 q^{-34} +84 q^{-35} +40 q^{-36} +37 q^{-37} -3 q^{-38} -25 q^{-39} -51 q^{-40} -33 q^{-41} +34 q^{-42} +13 q^{-43} +24 q^{-44} +9 q^{-45} -22 q^{-47} -20 q^{-48} +9 q^{-49} +9 q^{-51} +5 q^{-52} +5 q^{-53} -7 q^{-54} -7 q^{-55} +3 q^{-56} -2 q^{-57} +2 q^{-58} + q^{-59} +2 q^{-60} - q^{-61} -2 q^{-62} + q^{-63} </math>|J7=<math>-q^{84}+2 q^{83}+q^{82}-2 q^{81}-q^{80}-2 q^{79}+2 q^{78}-q^{76}+7 q^{75}+4 q^{74}-4 q^{73}-5 q^{72}-11 q^{71}-q^{70}+3 q^{69}-q^{68}+21 q^{67}+16 q^{66}+q^{65}-9 q^{64}-34 q^{63}-21 q^{62}-8 q^{61}-4 q^{60}+44 q^{59}+49 q^{58}+30 q^{57}+12 q^{56}-59 q^{55}-68 q^{54}-55 q^{53}-41 q^{52}+58 q^{51}+94 q^{50}+98 q^{49}+78 q^{48}-50 q^{47}-118 q^{46}-138 q^{45}-128 q^{44}+28 q^{43}+126 q^{42}+181 q^{41}+195 q^{40}+7 q^{39}-135 q^{38}-224 q^{37}-250 q^{36}-50 q^{35}+119 q^{34}+256 q^{33}+322 q^{32}+101 q^{31}-115 q^{30}-281 q^{29}-371 q^{28}-149 q^{27}+86 q^{26}+299 q^{25}+433 q^{24}+191 q^{23}-75 q^{22}-312 q^{21}-460 q^{20}-232 q^{19}+45 q^{18}+319 q^{17}+506 q^{16}+260 q^{15}-44 q^{14}-321 q^{13}-512 q^{12}-284 q^{11}+14 q^{10}+322 q^9+547 q^8+298 q^7-23 q^6-320 q^5-534 q^4-309 q^3-7 q^2+316 q+559+316 q^{-1} -7 q^{-2} -309 q^{-3} -534 q^{-4} -320 q^{-5} -23 q^{-6} +298 q^{-7} +547 q^{-8} +322 q^{-9} +14 q^{-10} -284 q^{-11} -512 q^{-12} -321 q^{-13} -44 q^{-14} +260 q^{-15} +506 q^{-16} +319 q^{-17} +45 q^{-18} -232 q^{-19} -460 q^{-20} -312 q^{-21} -75 q^{-22} +191 q^{-23} +433 q^{-24} +299 q^{-25} +86 q^{-26} -149 q^{-27} -371 q^{-28} -281 q^{-29} -115 q^{-30} +101 q^{-31} +322 q^{-32} +256 q^{-33} +119 q^{-34} -50 q^{-35} -250 q^{-36} -224 q^{-37} -135 q^{-38} +7 q^{-39} +195 q^{-40} +181 q^{-41} +126 q^{-42} +28 q^{-43} -128 q^{-44} -138 q^{-45} -118 q^{-46} -50 q^{-47} +78 q^{-48} +98 q^{-49} +94 q^{-50} +58 q^{-51} -41 q^{-52} -55 q^{-53} -68 q^{-54} -59 q^{-55} +12 q^{-56} +30 q^{-57} +49 q^{-58} +44 q^{-59} -4 q^{-60} -8 q^{-61} -21 q^{-62} -34 q^{-63} -9 q^{-64} + q^{-65} +16 q^{-66} +21 q^{-67} - q^{-68} +3 q^{-69} - q^{-70} -11 q^{-71} -5 q^{-72} -4 q^{-73} +4 q^{-74} +7 q^{-75} - q^{-76} +2 q^{-78} -2 q^{-79} - q^{-80} -2 q^{-81} + q^{-82} +2 q^{-83} - q^{-84} </math>}} |
|||
coloured_jones_4 = <math>q^{30}-2 q^{29}-q^{28}+2 q^{27}+q^{26}+5 q^{25}-7 q^{24}-5 q^{23}+2 q^{22}+3 q^{21}+17 q^{20}-12 q^{19}-14 q^{18}-3 q^{17}+4 q^{16}+34 q^{15}-12 q^{14}-22 q^{13}-13 q^{12}+2 q^{11}+52 q^{10}-9 q^9-28 q^8-23 q^7-q^6+64 q^5-6 q^4-30 q^3-29 q^2-4 q+69-4 q^{-1} -29 q^{-2} -30 q^{-3} -6 q^{-4} +64 q^{-5} - q^{-6} -23 q^{-7} -28 q^{-8} -9 q^{-9} +52 q^{-10} +2 q^{-11} -13 q^{-12} -22 q^{-13} -12 q^{-14} +34 q^{-15} +4 q^{-16} -3 q^{-17} -14 q^{-18} -12 q^{-19} +17 q^{-20} +3 q^{-21} +2 q^{-22} -5 q^{-23} -7 q^{-24} +5 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_5 = <math>-q^{45}+2 q^{44}+q^{43}-2 q^{42}-q^{41}-2 q^{40}-q^{39}+5 q^{38}+7 q^{37}-2 q^{36}-6 q^{35}-9 q^{34}-5 q^{33}+9 q^{32}+18 q^{31}+10 q^{30}-10 q^{29}-25 q^{28}-19 q^{27}+6 q^{26}+33 q^{25}+32 q^{24}-2 q^{23}-41 q^{22}-43 q^{21}-6 q^{20}+43 q^{19}+61 q^{18}+13 q^{17}-49 q^{16}-68 q^{15}-25 q^{14}+49 q^{13}+84 q^{12}+30 q^{11}-53 q^{10}-85 q^9-41 q^8+49 q^7+100 q^6+41 q^5-53 q^4-93 q^3-50 q^2+47 q+105+47 q^{-1} -50 q^{-2} -93 q^{-3} -53 q^{-4} +41 q^{-5} +100 q^{-6} +49 q^{-7} -41 q^{-8} -85 q^{-9} -53 q^{-10} +30 q^{-11} +84 q^{-12} +49 q^{-13} -25 q^{-14} -68 q^{-15} -49 q^{-16} +13 q^{-17} +61 q^{-18} +43 q^{-19} -6 q^{-20} -43 q^{-21} -41 q^{-22} -2 q^{-23} +32 q^{-24} +33 q^{-25} +6 q^{-26} -19 q^{-27} -25 q^{-28} -10 q^{-29} +10 q^{-30} +18 q^{-31} +9 q^{-32} -5 q^{-33} -9 q^{-34} -6 q^{-35} -2 q^{-36} +7 q^{-37} +5 q^{-38} - q^{-39} -2 q^{-40} - q^{-41} -2 q^{-42} + q^{-43} +2 q^{-44} - q^{-45} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{63}-2 q^{62}-q^{61}+2 q^{60}+q^{59}+2 q^{58}-2 q^{57}+3 q^{56}-7 q^{55}-7 q^{54}+5 q^{53}+5 q^{52}+9 q^{51}+9 q^{49}-20 q^{48}-22 q^{47}+9 q^{45}+24 q^{44}+13 q^{43}+34 q^{42}-33 q^{41}-51 q^{40}-25 q^{39}-3 q^{38}+37 q^{37}+40 q^{36}+84 q^{35}-29 q^{34}-78 q^{33}-69 q^{32}-38 q^{31}+32 q^{30}+68 q^{29}+153 q^{28}-4 q^{27}-89 q^{26}-115 q^{25}-88 q^{24}+9 q^{23}+85 q^{22}+220 q^{21}+31 q^{20}-85 q^{19}-150 q^{18}-134 q^{17}-20 q^{16}+91 q^{15}+271 q^{14}+60 q^{13}-75 q^{12}-172 q^{11}-164 q^{10}-43 q^9+90 q^8+301 q^7+77 q^6-66 q^5-180 q^4-178 q^3-57 q^2+86 q+311+86 q^{-1} -57 q^{-2} -178 q^{-3} -180 q^{-4} -66 q^{-5} +77 q^{-6} +301 q^{-7} +90 q^{-8} -43 q^{-9} -164 q^{-10} -172 q^{-11} -75 q^{-12} +60 q^{-13} +271 q^{-14} +91 q^{-15} -20 q^{-16} -134 q^{-17} -150 q^{-18} -85 q^{-19} +31 q^{-20} +220 q^{-21} +85 q^{-22} +9 q^{-23} -88 q^{-24} -115 q^{-25} -89 q^{-26} -4 q^{-27} +153 q^{-28} +68 q^{-29} +32 q^{-30} -38 q^{-31} -69 q^{-32} -78 q^{-33} -29 q^{-34} +84 q^{-35} +40 q^{-36} +37 q^{-37} -3 q^{-38} -25 q^{-39} -51 q^{-40} -33 q^{-41} +34 q^{-42} +13 q^{-43} +24 q^{-44} +9 q^{-45} -22 q^{-47} -20 q^{-48} +9 q^{-49} +9 q^{-51} +5 q^{-52} +5 q^{-53} -7 q^{-54} -7 q^{-55} +3 q^{-56} -2 q^{-57} +2 q^{-58} + q^{-59} +2 q^{-60} - q^{-61} -2 q^{-62} + q^{-63} </math> | |
|||
coloured_jones_7 = <math>-q^{84}+2 q^{83}+q^{82}-2 q^{81}-q^{80}-2 q^{79}+2 q^{78}-q^{76}+7 q^{75}+4 q^{74}-4 q^{73}-5 q^{72}-11 q^{71}-q^{70}+3 q^{69}-q^{68}+21 q^{67}+16 q^{66}+q^{65}-9 q^{64}-34 q^{63}-21 q^{62}-8 q^{61}-4 q^{60}+44 q^{59}+49 q^{58}+30 q^{57}+12 q^{56}-59 q^{55}-68 q^{54}-55 q^{53}-41 q^{52}+58 q^{51}+94 q^{50}+98 q^{49}+78 q^{48}-50 q^{47}-118 q^{46}-138 q^{45}-128 q^{44}+28 q^{43}+126 q^{42}+181 q^{41}+195 q^{40}+7 q^{39}-135 q^{38}-224 q^{37}-250 q^{36}-50 q^{35}+119 q^{34}+256 q^{33}+322 q^{32}+101 q^{31}-115 q^{30}-281 q^{29}-371 q^{28}-149 q^{27}+86 q^{26}+299 q^{25}+433 q^{24}+191 q^{23}-75 q^{22}-312 q^{21}-460 q^{20}-232 q^{19}+45 q^{18}+319 q^{17}+506 q^{16}+260 q^{15}-44 q^{14}-321 q^{13}-512 q^{12}-284 q^{11}+14 q^{10}+322 q^9+547 q^8+298 q^7-23 q^6-320 q^5-534 q^4-309 q^3-7 q^2+316 q+559+316 q^{-1} -7 q^{-2} -309 q^{-3} -534 q^{-4} -320 q^{-5} -23 q^{-6} +298 q^{-7} +547 q^{-8} +322 q^{-9} +14 q^{-10} -284 q^{-11} -512 q^{-12} -321 q^{-13} -44 q^{-14} +260 q^{-15} +506 q^{-16} +319 q^{-17} +45 q^{-18} -232 q^{-19} -460 q^{-20} -312 q^{-21} -75 q^{-22} +191 q^{-23} +433 q^{-24} +299 q^{-25} +86 q^{-26} -149 q^{-27} -371 q^{-28} -281 q^{-29} -115 q^{-30} +101 q^{-31} +322 q^{-32} +256 q^{-33} +119 q^{-34} -50 q^{-35} -250 q^{-36} -224 q^{-37} -135 q^{-38} +7 q^{-39} +195 q^{-40} +181 q^{-41} +126 q^{-42} +28 q^{-43} -128 q^{-44} -138 q^{-45} -118 q^{-46} -50 q^{-47} +78 q^{-48} +98 q^{-49} +94 q^{-50} +58 q^{-51} -41 q^{-52} -55 q^{-53} -68 q^{-54} -59 q^{-55} +12 q^{-56} +30 q^{-57} +49 q^{-58} +44 q^{-59} -4 q^{-60} -8 q^{-61} -21 q^{-62} -34 q^{-63} -9 q^{-64} + q^{-65} +16 q^{-66} +21 q^{-67} - q^{-68} +3 q^{-69} - q^{-70} -11 q^{-71} -5 q^{-72} -4 q^{-73} +4 q^{-74} +7 q^{-75} - q^{-76} +2 q^{-78} -2 q^{-79} - q^{-80} -2 q^{-81} + q^{-82} +2 q^{-83} - q^{-84} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[6, 3]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 9, 1, 10], X[10, 5, 11, 6], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[6, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 9, 1, 10], X[10, 5, 11, 6], |
|||
X[6, 11, 7, 12], X[2, 8, 3, 7]]</nowiki></ |
X[6, 11, 7, 12], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[6, 3]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[6, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[6, 3]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[6, 3]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[6, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 2, 12, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[6, 3]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:6_3_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[6, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[6, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[6, 3]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[6, 3]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[6, 3]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:6_3_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[6, 3]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 1, 2, 2, {3, 4}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[6, 3]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 |
|||
5 + t - - - 3 t + t |
5 + t - - - 3 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[6, 3]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[6, 3]][z]</nowiki></code></td></tr> |
|||
1 + z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[6, 3]], KnotSignature[Knot[6, 3]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 2 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 3], Knot[11, NonAlternating, 12]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[6, 3]], KnotSignature[Knot[6, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[6, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 2 2 3 |
|||
3 - q + -- - - - 2 q + 2 q - q |
3 - q + -- - - - 2 q + 2 q - q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[6, 3]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 3]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[6, 3]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 2 10 |
|||
1 - q + -- + 2 q - q |
1 - q + -- + 2 q - q |
||
2 |
2 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[6, 3]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[6, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 2 z 2 2 4 |
-2 2 2 z 2 2 4 |
||
3 - a - a + 3 z - -- - a z + z |
3 - a - a + 3 z - -- - a z + z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[6, 3]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[6, 3]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 |
|||
-2 2 z 2 z 3 2 3 z 2 2 z |
-2 2 z 2 z 3 2 3 z 2 2 z |
||
3 + a + a - -- - --- - 2 a z - a z - 6 z - ---- - 3 a z + -- + |
3 + a + a - -- - --- - 2 a z - a z - 6 z - ---- - 3 a z + -- + |
||
Line 153: | Line 195: | ||
-- + a z + a z + 4 z + ---- + 2 a z + -- + a z |
-- + a z + a z + 4 z + ---- + 2 a z + -- + a z |
||
a 2 a |
a 2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[6, 3]], Vassiliev[3][Knot[6, 3]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[6, 3]], Vassiliev[3][Knot[6, 3]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[6, 3]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[6, 3]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 3 3 2 |
|||
- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t + q t + |
- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t + q t + |
||
q 7 3 5 2 3 2 3 q t |
q 7 3 5 2 3 2 3 q t |
||
Line 165: | Line 215: | ||
5 2 7 3 |
5 2 7 3 |
||
q t + q t</nowiki></ |
q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[6, 3], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[6, 3], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 2 -7 5 4 3 9 5 5 2 3 |
|||
11 + q - -- - q + -- - -- - -- + -- - -- - - - 5 q - 5 q + 9 q - |
11 + q - -- - q + -- - -- - -- + -- - -- - - - 5 q - 5 q + 9 q - |
||
8 6 5 4 3 2 q |
8 6 5 4 3 2 q |
||
Line 174: | Line 228: | ||
4 5 6 7 8 9 |
4 5 6 7 8 9 |
||
3 q - 4 q + 5 q - q - 2 q + q</nowiki></ |
3 q - 4 q + 5 q - q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 6 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X8493 X12,9,1,10 X10,5,11,6 X6,11,7,12 X2837 |
Gauss code | 1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3 |
Dowker-Thistlethwaite code | 4 8 10 2 12 6 |
Conway Notation | [2112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 6, width is 3, Braid index is 3 |
[{3, 7}, {2, 5}, {4, 6}, {5, 8}, {7, 9}, {8, 4}, {1, 3}, {9, 2}, {6, 1}] |
[edit Notes on presentations of 6 3]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["6 3"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X12,9,1,10 X10,5,11,6 X6,11,7,12 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 2 12 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 6, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 7}, {2, 5}, {4, 6}, {5, 8}, {7, 9}, {8, 4}, {1, 3}, {9, 2}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["6 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n12,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["6 3"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n12,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 6 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|