6 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=6_3}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 6 |
k = 3 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,4,-5,6,-2,3,-4,5,-3/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 6 |
braid_width = 3 |
braid_index = 3 |
same_alexander = [[K11n12]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=9.09091%>3</td ><td width=18.1818%>&chi;</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math>q^9-2 q^8-q^7+5 q^6-4 q^5-3 q^4+9 q^3-5 q^2-5 q+11-5 q^{-1} -5 q^{-2} +9 q^{-3} -3 q^{-4} -4 q^{-5} +5 q^{-6} - q^{-7} -2 q^{-8} + q^{-9} </math> |
coloured_jones_3 = <math>-q^{18}+2 q^{17}+q^{16}-2 q^{15}-4 q^{14}+3 q^{13}+7 q^{12}-4 q^{11}-10 q^{10}+3 q^9+14 q^8-3 q^7-16 q^6+q^5+21 q^4-2 q^3-20 q^2-q+23- q^{-1} -20 q^{-2} -2 q^{-3} +21 q^{-4} + q^{-5} -16 q^{-6} -3 q^{-7} +14 q^{-8} +3 q^{-9} -10 q^{-10} -4 q^{-11} +7 q^{-12} +3 q^{-13} -4 q^{-14} -2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} </math> |
coloured_jones_4 = <math>q^{30}-2 q^{29}-q^{28}+2 q^{27}+q^{26}+5 q^{25}-7 q^{24}-5 q^{23}+2 q^{22}+3 q^{21}+17 q^{20}-12 q^{19}-14 q^{18}-3 q^{17}+4 q^{16}+34 q^{15}-12 q^{14}-22 q^{13}-13 q^{12}+2 q^{11}+52 q^{10}-9 q^9-28 q^8-23 q^7-q^6+64 q^5-6 q^4-30 q^3-29 q^2-4 q+69-4 q^{-1} -29 q^{-2} -30 q^{-3} -6 q^{-4} +64 q^{-5} - q^{-6} -23 q^{-7} -28 q^{-8} -9 q^{-9} +52 q^{-10} +2 q^{-11} -13 q^{-12} -22 q^{-13} -12 q^{-14} +34 q^{-15} +4 q^{-16} -3 q^{-17} -14 q^{-18} -12 q^{-19} +17 q^{-20} +3 q^{-21} +2 q^{-22} -5 q^{-23} -7 q^{-24} +5 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math> |
coloured_jones_5 = <math>-q^{45}+2 q^{44}+q^{43}-2 q^{42}-q^{41}-2 q^{40}-q^{39}+5 q^{38}+7 q^{37}-2 q^{36}-6 q^{35}-9 q^{34}-5 q^{33}+9 q^{32}+18 q^{31}+10 q^{30}-10 q^{29}-25 q^{28}-19 q^{27}+6 q^{26}+33 q^{25}+32 q^{24}-2 q^{23}-41 q^{22}-43 q^{21}-6 q^{20}+43 q^{19}+61 q^{18}+13 q^{17}-49 q^{16}-68 q^{15}-25 q^{14}+49 q^{13}+84 q^{12}+30 q^{11}-53 q^{10}-85 q^9-41 q^8+49 q^7+100 q^6+41 q^5-53 q^4-93 q^3-50 q^2+47 q+105+47 q^{-1} -50 q^{-2} -93 q^{-3} -53 q^{-4} +41 q^{-5} +100 q^{-6} +49 q^{-7} -41 q^{-8} -85 q^{-9} -53 q^{-10} +30 q^{-11} +84 q^{-12} +49 q^{-13} -25 q^{-14} -68 q^{-15} -49 q^{-16} +13 q^{-17} +61 q^{-18} +43 q^{-19} -6 q^{-20} -43 q^{-21} -41 q^{-22} -2 q^{-23} +32 q^{-24} +33 q^{-25} +6 q^{-26} -19 q^{-27} -25 q^{-28} -10 q^{-29} +10 q^{-30} +18 q^{-31} +9 q^{-32} -5 q^{-33} -9 q^{-34} -6 q^{-35} -2 q^{-36} +7 q^{-37} +5 q^{-38} - q^{-39} -2 q^{-40} - q^{-41} -2 q^{-42} + q^{-43} +2 q^{-44} - q^{-45} </math> |
coloured_jones_6 = <math>q^{63}-2 q^{62}-q^{61}+2 q^{60}+q^{59}+2 q^{58}-2 q^{57}+3 q^{56}-7 q^{55}-7 q^{54}+5 q^{53}+5 q^{52}+9 q^{51}+9 q^{49}-20 q^{48}-22 q^{47}+9 q^{45}+24 q^{44}+13 q^{43}+34 q^{42}-33 q^{41}-51 q^{40}-25 q^{39}-3 q^{38}+37 q^{37}+40 q^{36}+84 q^{35}-29 q^{34}-78 q^{33}-69 q^{32}-38 q^{31}+32 q^{30}+68 q^{29}+153 q^{28}-4 q^{27}-89 q^{26}-115 q^{25}-88 q^{24}+9 q^{23}+85 q^{22}+220 q^{21}+31 q^{20}-85 q^{19}-150 q^{18}-134 q^{17}-20 q^{16}+91 q^{15}+271 q^{14}+60 q^{13}-75 q^{12}-172 q^{11}-164 q^{10}-43 q^9+90 q^8+301 q^7+77 q^6-66 q^5-180 q^4-178 q^3-57 q^2+86 q+311+86 q^{-1} -57 q^{-2} -178 q^{-3} -180 q^{-4} -66 q^{-5} +77 q^{-6} +301 q^{-7} +90 q^{-8} -43 q^{-9} -164 q^{-10} -172 q^{-11} -75 q^{-12} +60 q^{-13} +271 q^{-14} +91 q^{-15} -20 q^{-16} -134 q^{-17} -150 q^{-18} -85 q^{-19} +31 q^{-20} +220 q^{-21} +85 q^{-22} +9 q^{-23} -88 q^{-24} -115 q^{-25} -89 q^{-26} -4 q^{-27} +153 q^{-28} +68 q^{-29} +32 q^{-30} -38 q^{-31} -69 q^{-32} -78 q^{-33} -29 q^{-34} +84 q^{-35} +40 q^{-36} +37 q^{-37} -3 q^{-38} -25 q^{-39} -51 q^{-40} -33 q^{-41} +34 q^{-42} +13 q^{-43} +24 q^{-44} +9 q^{-45} -22 q^{-47} -20 q^{-48} +9 q^{-49} +9 q^{-51} +5 q^{-52} +5 q^{-53} -7 q^{-54} -7 q^{-55} +3 q^{-56} -2 q^{-57} +2 q^{-58} + q^{-59} +2 q^{-60} - q^{-61} -2 q^{-62} + q^{-63} </math> |
coloured_jones_7 = <math>-q^{84}+2 q^{83}+q^{82}-2 q^{81}-q^{80}-2 q^{79}+2 q^{78}-q^{76}+7 q^{75}+4 q^{74}-4 q^{73}-5 q^{72}-11 q^{71}-q^{70}+3 q^{69}-q^{68}+21 q^{67}+16 q^{66}+q^{65}-9 q^{64}-34 q^{63}-21 q^{62}-8 q^{61}-4 q^{60}+44 q^{59}+49 q^{58}+30 q^{57}+12 q^{56}-59 q^{55}-68 q^{54}-55 q^{53}-41 q^{52}+58 q^{51}+94 q^{50}+98 q^{49}+78 q^{48}-50 q^{47}-118 q^{46}-138 q^{45}-128 q^{44}+28 q^{43}+126 q^{42}+181 q^{41}+195 q^{40}+7 q^{39}-135 q^{38}-224 q^{37}-250 q^{36}-50 q^{35}+119 q^{34}+256 q^{33}+322 q^{32}+101 q^{31}-115 q^{30}-281 q^{29}-371 q^{28}-149 q^{27}+86 q^{26}+299 q^{25}+433 q^{24}+191 q^{23}-75 q^{22}-312 q^{21}-460 q^{20}-232 q^{19}+45 q^{18}+319 q^{17}+506 q^{16}+260 q^{15}-44 q^{14}-321 q^{13}-512 q^{12}-284 q^{11}+14 q^{10}+322 q^9+547 q^8+298 q^7-23 q^6-320 q^5-534 q^4-309 q^3-7 q^2+316 q+559+316 q^{-1} -7 q^{-2} -309 q^{-3} -534 q^{-4} -320 q^{-5} -23 q^{-6} +298 q^{-7} +547 q^{-8} +322 q^{-9} +14 q^{-10} -284 q^{-11} -512 q^{-12} -321 q^{-13} -44 q^{-14} +260 q^{-15} +506 q^{-16} +319 q^{-17} +45 q^{-18} -232 q^{-19} -460 q^{-20} -312 q^{-21} -75 q^{-22} +191 q^{-23} +433 q^{-24} +299 q^{-25} +86 q^{-26} -149 q^{-27} -371 q^{-28} -281 q^{-29} -115 q^{-30} +101 q^{-31} +322 q^{-32} +256 q^{-33} +119 q^{-34} -50 q^{-35} -250 q^{-36} -224 q^{-37} -135 q^{-38} +7 q^{-39} +195 q^{-40} +181 q^{-41} +126 q^{-42} +28 q^{-43} -128 q^{-44} -138 q^{-45} -118 q^{-46} -50 q^{-47} +78 q^{-48} +98 q^{-49} +94 q^{-50} +58 q^{-51} -41 q^{-52} -55 q^{-53} -68 q^{-54} -59 q^{-55} +12 q^{-56} +30 q^{-57} +49 q^{-58} +44 q^{-59} -4 q^{-60} -8 q^{-61} -21 q^{-62} -34 q^{-63} -9 q^{-64} + q^{-65} +16 q^{-66} +21 q^{-67} - q^{-68} +3 q^{-69} - q^{-70} -11 q^{-71} -5 q^{-72} -4 q^{-73} +4 q^{-74} +7 q^{-75} - q^{-76} +2 q^{-78} -2 q^{-79} - q^{-80} -2 q^{-81} + q^{-82} +2 q^{-83} - q^{-84} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[6, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 9, 1, 10], X[10, 5, 11, 6],
X[6, 11, 7, 12], X[2, 8, 3, 7]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[6, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[6, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 2, 12, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[6, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, 2, 2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[6, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[6, 3]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:6_3_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[6, 3]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 1, 2, 2, {3, 4}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[6, 3]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2
5 + t - - - 3 t + t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[6, 3]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 + z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 3], Knot[11, NonAlternating, 12]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[6, 3]], KnotSignature[Knot[6, 3]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[6, 3]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 2 2 3
3 - q + -- - - - 2 q + 2 q - q
2 q
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[6, 3]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[6, 3]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 2 10
1 - q + -- + 2 q - q
2
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[6, 3]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-2 2 2 z 2 2 4
3 - a - a + 3 z - -- - a z + z
2
a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[6, 3]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3
-2 2 z 2 z 3 2 3 z 2 2 z
3 + a + a - -- - --- - 2 a z - a z - 6 z - ---- - 3 a z + -- +
3 a 2 3
a a a
3 4 5
z 3 3 3 4 2 z 2 4 z 5
-- + a z + a z + 4 z + ---- + 2 a z + -- + a z
a 2 a
a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[6, 3]], Vassiliev[3][Knot[6, 3]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[6, 3]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 1 1 3 3 2
- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t + q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
5 2 7 3
q t + q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[6, 3], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 2 -7 5 4 3 9 5 5 2 3
11 + q - -- - q + -- - -- - -- + -- - -- - - - 5 q - 5 q + 9 q -
8 6 5 4 3 2 q
q q q q q q
4 5 6 7 8 9
3 q - 4 q + 5 q - q - 2 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:01, 1 September 2005

6 2.gif

6_2

7 1.gif

7_1

6 3.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 6 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 3 at Knotilus!

3D depiction
Irish knot, sum of four 6.3

Knot presentations

Planar diagram presentation X4251 X8493 X12,9,1,10 X10,5,11,6 X6,11,7,12 X2837
Gauss code 1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3
Dowker-Thistlethwaite code 4 8 10 2 12 6
Conway Notation [2112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 6, width is 3,

Braid index is 3

6 3 ML.gif 6 3 AP.gif
[{3, 7}, {2, 5}, {4, 6}, {5, 8}, {7, 9}, {8, 4}, {1, 3}, {9, 2}, {6, 1}]

[edit Notes on presentations of 6 3]

Knot 6_3.
A graph, knot 6_3.

Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-4]
Hyperbolic Volume 5.69302
A-Polynomial See Data:6 3/A-polynomial

[edit Notes for 6 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 6 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n12,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 6 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123χ
7      1-1
5     1 1
3    11 0
1   21  1
-1  12   1
-3 11    0
-5 1     1
-71      -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials