7 1: Difference between revisions
No edit summary |
m (Reverted edit of 219.236.3.100, changed back to last version by Scott) |
||
(10 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 7 | |
|||
<span id="top"></span> |
|||
k = 1 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,6,-3,7,-4,1,-5,2,-6,3,-7,4/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
{| align=left |
|||
</table> | |
|||
|- valign=top |
|||
braid_crossings = 7 | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_width = 2 | |
|||
|{{Rolfsen Knot Site Links|n=7|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,5,-2,6,-3,7,-4,1,-5,2,-6,3,-7,4/goTop.html}} |
|||
braid_index = 2 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
same_alexander = | |
|||
|} |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=8.33333%>-7</td ><td width=8.33333%>-6</td ><td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
Line 45: | Line 35: | ||
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math> q^{-6} + q^{-9} - q^{-11} + q^{-12} - q^{-14} + q^{-15} - q^{-17} + q^{-18} - q^{-20} - q^{-23} + q^{-24} - q^{-26} + q^{-27} </math> | |
|||
coloured_jones_3 = <math> q^{-9} + q^{-13} - q^{-16} + q^{-17} - q^{-20} + q^{-21} - q^{-24} + q^{-25} - q^{-28} + q^{-29} - q^{-31} - q^{-32} + q^{-33} - q^{-35} + q^{-37} - q^{-39} + q^{-41} - q^{-43} + q^{-45} + q^{-46} - q^{-47} + q^{-50} - q^{-51} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math> q^{-12} + q^{-17} - q^{-21} + q^{-22} - q^{-26} + q^{-27} - q^{-31} + q^{-32} - q^{-36} + q^{-37} -2 q^{-41} + q^{-42} -2 q^{-46} + q^{-47} + q^{-48} -2 q^{-51} + q^{-52} + q^{-53} -2 q^{-56} + q^{-57} + q^{-58} -2 q^{-61} + q^{-62} +2 q^{-63} -2 q^{-66} + q^{-67} + q^{-68} -2 q^{-71} + q^{-72} + q^{-73} -2 q^{-76} + q^{-77} - q^{-81} + q^{-82} </math> | |
|||
coloured_jones_5 = <math> q^{-15} + q^{-21} - q^{-26} + q^{-27} - q^{-32} + q^{-33} - q^{-38} + q^{-39} - q^{-44} + q^{-45} - q^{-50} - q^{-56} + q^{-60} - q^{-62} + q^{-66} - q^{-68} + q^{-72} - q^{-74} + q^{-78} + q^{-84} - q^{-87} + q^{-90} - q^{-93} + q^{-96} - q^{-99} - q^{-105} + q^{-107} - q^{-111} + q^{-113} + q^{-119} - q^{-120} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math> q^{-18} + q^{-25} - q^{-31} + q^{-32} - q^{-38} + q^{-39} - q^{-45} + q^{-46} - q^{-52} + q^{-53} - q^{-59} + q^{-60} - q^{-61} - q^{-66} + q^{-67} - q^{-68} + q^{-72} - q^{-73} + q^{-74} - q^{-75} + q^{-79} - q^{-80} + q^{-81} - q^{-82} + q^{-86} - q^{-87} + q^{-88} - q^{-89} + q^{-93} - q^{-94} + q^{-95} - q^{-96} + q^{-97} + q^{-100} - q^{-101} + q^{-102} - q^{-103} + q^{-104} - q^{-106} + q^{-107} - q^{-108} + q^{-109} - q^{-110} + q^{-111} - q^{-113} + q^{-114} - q^{-115} + q^{-116} - q^{-117} + q^{-118} - q^{-120} + q^{-121} - q^{-122} + q^{-123} - q^{-124} + q^{-125} - q^{-126} - q^{-127} + q^{-128} - q^{-129} + q^{-130} - q^{-131} + q^{-132} - q^{-134} + q^{-135} - q^{-136} + q^{-137} - q^{-138} + q^{-139} - q^{-141} + q^{-142} - q^{-143} + q^{-144} - q^{-145} + q^{-146} + q^{-149} - q^{-150} + q^{-151} - q^{-152} + q^{-156} - q^{-157} + q^{-158} - q^{-159} - q^{-164} + q^{-165} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math> q^{-21} + q^{-29} - q^{-36} + q^{-37} - q^{-44} + q^{-45} - q^{-52} + q^{-53} - q^{-60} + q^{-61} - q^{-68} + q^{-69} - q^{-71} - q^{-76} + q^{-77} - q^{-79} + q^{-85} - q^{-87} + q^{-93} - q^{-95} + q^{-101} - q^{-103} + q^{-109} - q^{-111} + q^{-114} + q^{-117} - q^{-119} + q^{-122} - q^{-127} + q^{-130} - q^{-135} + q^{-138} - q^{-143} + q^{-146} - q^{-150} - q^{-151} + q^{-154} - q^{-158} + q^{-162} - q^{-166} + q^{-170} - q^{-174} + q^{-178} + q^{-179} - q^{-182} + q^{-187} - q^{-190} + q^{-195} - q^{-198} - q^{-201} + q^{-203} - q^{-209} + q^{-211} + q^{-216} - q^{-217} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 8, 2, 9], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 8, 2, 9], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1], |
|||
X[9, 2, 10, 3], X[11, 4, 12, 5], X[13, 6, 14, 7]]</nowiki></ |
X[9, 2, 10, 3], X[11, 4, 12, 5], X[13, 6, 14, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 1]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 1]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[8, 10, 12, 14, 2, 4, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[2, {-1, -1, -1, -1, -1, -1, -1}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 7}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 1]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 1]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:7_1_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 1]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 2, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 1]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 -2 1 2 3 |
|||
-1 + t - t + - + t - t + t |
-1 + t - t + - + t - t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 1]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 6 z + 5 z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 1]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 1]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 6 z + 5 z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[7, 1]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -9 -8 -7 -6 -5 -3 |
|||
<table><tr align=left> |
|||
-q + q - q + q - q + q + q</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 1]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 1]], KnotSignature[Knot[7, 1]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 1]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -9 -8 -7 -6 -5 -3 |
|||
-q + q - q + q - q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 1]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 1]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -30 -28 -26 -18 -16 2 -12 -10 |
|||
-q - q - q + q + q + --- + q + q |
-q - q - q + q + q + --- + q + q |
||
14 |
14 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 1]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 7 9 11 13 6 2 8 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 1]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 6 2 8 2 6 4 8 4 6 6 |
|||
4 a - 3 a + 10 a z - 4 a z + 6 a z - a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 1]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 7 9 11 13 6 2 8 2 |
|||
-4 a - 3 a + 3 a z + a z - a z + a z + 10 a z + 7 a z - |
-4 a - 3 a + 3 a z + a z - a z + a z + 10 a z + 7 a z - |
||
Line 95: | Line 187: | ||
10 4 7 5 9 5 6 6 8 6 |
10 4 7 5 9 5 6 6 8 6 |
||
a z + a z + a z + a z + a z</nowiki></ |
a z + a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 1]], Vassiliev[3][Knot[7, 1]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -14}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 1]], Vassiliev[3][Knot[7, 1]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, -14}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 1]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 1 1 1 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ----- |
q + q + ------ + ------ + ------ + ------ + ------ + ----- |
||
21 7 17 6 17 5 13 4 13 3 9 2 |
21 7 17 6 17 5 13 4 13 3 9 2 |
||
q t q t q t q t q t q t</nowiki></ |
q t q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 1], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -27 -26 -24 -23 -20 -18 -17 -15 -14 -12 |
|||
q - q + q - q - q + q - q + q - q + q - |
|||
-11 -9 -6 |
|||
q + q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 05:13, 13 June 2007
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 7 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
7_1 should perhaps be called "The Septafoil Knot", following the trefoil knot and the cinquefoil knot. See also T(7,2). |
Knot presentations
Planar diagram presentation | X1829 X3,10,4,11 X5,12,6,13 X7,14,8,1 X9,2,10,3 X11,4,12,5 X13,6,14,7 |
Gauss code | -1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4 |
Dowker-Thistlethwaite code | 8 10 12 14 2 4 6 |
Conway Notation | [7] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 7, width is 2, Braid index is 2 |
[{9, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 1}] |
[edit Notes on presentations of 7 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1829 X3,10,4,11 X5,12,6,13 X7,14,8,1 X9,2,10,3 X11,4,12,5 X13,6,14,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 6, -3, 7, -4, 1, -5, 2, -6, 3, -7, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
8 10 12 14 2 4 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[7] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 7, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (6, -14) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 7 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|