9 37: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- provide an anchor so we can return to the top of the page -->
k = 37 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,6,-2,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=37|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,6,-2,9,-8,3,-4,2,-6,5,-7,8,-9,7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 26: Line 15:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 12 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 12, width is 5.
braid_index = 5 |

same_alexander = [[K11n100]], |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n100]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 72: Line 40:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{12}-2 q^{11}+q^{10}+5 q^9-11 q^8+3 q^7+19 q^6-29 q^5+q^4+41 q^3-44 q^2-5 q+58-48 q^{-1} -14 q^{-2} +59 q^{-3} -39 q^{-4} -20 q^{-5} +46 q^{-6} -20 q^{-7} -18 q^{-8} +26 q^{-9} -5 q^{-10} -11 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>q^{24}-2 q^{23}+q^{22}+q^{21}+q^{20}-7 q^{19}+3 q^{18}+11 q^{17}-3 q^{16}-27 q^{15}+9 q^{14}+42 q^{13}+q^{12}-77 q^{11}-4 q^{10}+104 q^9+26 q^8-137 q^7-51 q^6+166 q^5+78 q^4-183 q^3-112 q^2+197 q+130-189 q^{-1} -156 q^{-2} +183 q^{-3} +165 q^{-4} -158 q^{-5} -172 q^{-6} +132 q^{-7} +172 q^{-8} -100 q^{-9} -159 q^{-10} +57 q^{-11} +151 q^{-12} -34 q^{-13} -120 q^{-14} -2 q^{-15} +100 q^{-16} +14 q^{-17} -66 q^{-18} -26 q^{-19} +44 q^{-20} +23 q^{-21} -22 q^{-22} -19 q^{-23} +11 q^{-24} +11 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{12}-2 q^{11}+q^{10}+5 q^9-11 q^8+3 q^7+19 q^6-29 q^5+q^4+41 q^3-44 q^2-5 q+58-48 q^{-1} -14 q^{-2} +59 q^{-3} -39 q^{-4} -20 q^{-5} +46 q^{-6} -20 q^{-7} -18 q^{-8} +26 q^{-9} -5 q^{-10} -11 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{24}-2 q^{23}+q^{22}+q^{21}+q^{20}-7 q^{19}+3 q^{18}+11 q^{17}-3 q^{16}-27 q^{15}+9 q^{14}+42 q^{13}+q^{12}-77 q^{11}-4 q^{10}+104 q^9+26 q^8-137 q^7-51 q^6+166 q^5+78 q^4-183 q^3-112 q^2+197 q+130-189 q^{-1} -156 q^{-2} +183 q^{-3} +165 q^{-4} -158 q^{-5} -172 q^{-6} +132 q^{-7} +172 q^{-8} -100 q^{-9} -159 q^{-10} +57 q^{-11} +151 q^{-12} -34 q^{-13} -120 q^{-14} -2 q^{-15} +100 q^{-16} +14 q^{-17} -66 q^{-18} -26 q^{-19} +44 q^{-20} +23 q^{-21} -22 q^{-22} -19 q^{-23} +11 q^{-24} +11 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{40}-2 q^{39}+q^{38}+q^{37}-3 q^{36}+5 q^{35}-7 q^{34}+5 q^{33}+6 q^{32}-15 q^{31}+9 q^{30}-18 q^{29}+27 q^{28}+31 q^{27}-49 q^{26}-13 q^{25}-59 q^{24}+87 q^{23}+126 q^{22}-73 q^{21}-86 q^{20}-213 q^{19}+140 q^{18}+337 q^{17}+7 q^{16}-163 q^{15}-517 q^{14}+89 q^{13}+591 q^{12}+229 q^{11}-139 q^{10}-875 q^9-102 q^8+759 q^7+506 q^6+4 q^5-1137 q^4-336 q^3+780 q^2+705 q+197-1231 q^{-1} -511 q^{-2} +680 q^{-3} +774 q^{-4} +373 q^{-5} -1163 q^{-6} -603 q^{-7} +492 q^{-8} +734 q^{-9} +523 q^{-10} -959 q^{-11} -626 q^{-12} +241 q^{-13} +596 q^{-14} +626 q^{-15} -637 q^{-16} -564 q^{-17} -32 q^{-18} +366 q^{-19} +632 q^{-20} -282 q^{-21} -396 q^{-22} -210 q^{-23} +107 q^{-24} +494 q^{-25} -25 q^{-26} -169 q^{-27} -221 q^{-28} -68 q^{-29} +275 q^{-30} +61 q^{-31} -8 q^{-32} -123 q^{-33} -101 q^{-34} +102 q^{-35} +39 q^{-36} +35 q^{-37} -37 q^{-38} -57 q^{-39} +25 q^{-40} +8 q^{-41} +20 q^{-42} -4 q^{-43} -18 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>q^{60}-2 q^{59}+q^{58}+q^{57}-3 q^{56}+q^{55}+5 q^{54}-5 q^{53}+4 q^{51}-10 q^{50}-2 q^{49}+17 q^{48}+2 q^{47}+5 q^{46}-3 q^{45}-39 q^{44}-31 q^{43}+30 q^{42}+67 q^{41}+72 q^{40}+6 q^{39}-146 q^{38}-184 q^{37}-38 q^{36}+191 q^{35}+356 q^{34}+211 q^{33}-251 q^{32}-596 q^{31}-454 q^{30}+155 q^{29}+860 q^{28}+926 q^{27}+16 q^{26}-1104 q^{25}-1429 q^{24}-460 q^{23}+1226 q^{22}+2093 q^{21}+1032 q^{20}-1216 q^{19}-2660 q^{18}-1780 q^{17}+982 q^{16}+3185 q^{15}+2576 q^{14}-607 q^{13}-3544 q^{12}-3325 q^{11}+110 q^{10}+3701 q^9+4010 q^8+425 q^7-3755 q^6-4481 q^5-933 q^4+3609 q^3+4851 q^2+1391 q-3460-4996 q^{-1} -1752 q^{-2} +3163 q^{-3} +5081 q^{-4} +2059 q^{-5} -2903 q^{-6} -4986 q^{-7} -2302 q^{-8} +2518 q^{-9} +4858 q^{-10} +2522 q^{-11} -2125 q^{-12} -4596 q^{-13} -2701 q^{-14} +1618 q^{-15} +4241 q^{-16} +2861 q^{-17} -1051 q^{-18} -3791 q^{-19} -2940 q^{-20} +470 q^{-21} +3153 q^{-22} +2928 q^{-23} +182 q^{-24} -2507 q^{-25} -2764 q^{-26} -662 q^{-27} +1697 q^{-28} +2436 q^{-29} +1124 q^{-30} -1003 q^{-31} -1997 q^{-32} -1260 q^{-33} +304 q^{-34} +1440 q^{-35} +1314 q^{-36} +148 q^{-37} -909 q^{-38} -1096 q^{-39} -465 q^{-40} +425 q^{-41} +855 q^{-42} +538 q^{-43} -89 q^{-44} -531 q^{-45} -512 q^{-46} -112 q^{-47} +297 q^{-48} +378 q^{-49} +176 q^{-50} -101 q^{-51} -251 q^{-52} -177 q^{-53} +17 q^{-54} +141 q^{-55} +120 q^{-56} +28 q^{-57} -59 q^{-58} -84 q^{-59} -33 q^{-60} +29 q^{-61} +42 q^{-62} +18 q^{-63} -2 q^{-64} -18 q^{-65} -20 q^{-66} +4 q^{-67} +11 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=Not Available|J7=Not Available}}
coloured_jones_4 = <math>q^{40}-2 q^{39}+q^{38}+q^{37}-3 q^{36}+5 q^{35}-7 q^{34}+5 q^{33}+6 q^{32}-15 q^{31}+9 q^{30}-18 q^{29}+27 q^{28}+31 q^{27}-49 q^{26}-13 q^{25}-59 q^{24}+87 q^{23}+126 q^{22}-73 q^{21}-86 q^{20}-213 q^{19}+140 q^{18}+337 q^{17}+7 q^{16}-163 q^{15}-517 q^{14}+89 q^{13}+591 q^{12}+229 q^{11}-139 q^{10}-875 q^9-102 q^8+759 q^7+506 q^6+4 q^5-1137 q^4-336 q^3+780 q^2+705 q+197-1231 q^{-1} -511 q^{-2} +680 q^{-3} +774 q^{-4} +373 q^{-5} -1163 q^{-6} -603 q^{-7} +492 q^{-8} +734 q^{-9} +523 q^{-10} -959 q^{-11} -626 q^{-12} +241 q^{-13} +596 q^{-14} +626 q^{-15} -637 q^{-16} -564 q^{-17} -32 q^{-18} +366 q^{-19} +632 q^{-20} -282 q^{-21} -396 q^{-22} -210 q^{-23} +107 q^{-24} +494 q^{-25} -25 q^{-26} -169 q^{-27} -221 q^{-28} -68 q^{-29} +275 q^{-30} +61 q^{-31} -8 q^{-32} -123 q^{-33} -101 q^{-34} +102 q^{-35} +39 q^{-36} +35 q^{-37} -37 q^{-38} -57 q^{-39} +25 q^{-40} +8 q^{-41} +20 q^{-42} -4 q^{-43} -18 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>q^{60}-2 q^{59}+q^{58}+q^{57}-3 q^{56}+q^{55}+5 q^{54}-5 q^{53}+4 q^{51}-10 q^{50}-2 q^{49}+17 q^{48}+2 q^{47}+5 q^{46}-3 q^{45}-39 q^{44}-31 q^{43}+30 q^{42}+67 q^{41}+72 q^{40}+6 q^{39}-146 q^{38}-184 q^{37}-38 q^{36}+191 q^{35}+356 q^{34}+211 q^{33}-251 q^{32}-596 q^{31}-454 q^{30}+155 q^{29}+860 q^{28}+926 q^{27}+16 q^{26}-1104 q^{25}-1429 q^{24}-460 q^{23}+1226 q^{22}+2093 q^{21}+1032 q^{20}-1216 q^{19}-2660 q^{18}-1780 q^{17}+982 q^{16}+3185 q^{15}+2576 q^{14}-607 q^{13}-3544 q^{12}-3325 q^{11}+110 q^{10}+3701 q^9+4010 q^8+425 q^7-3755 q^6-4481 q^5-933 q^4+3609 q^3+4851 q^2+1391 q-3460-4996 q^{-1} -1752 q^{-2} +3163 q^{-3} +5081 q^{-4} +2059 q^{-5} -2903 q^{-6} -4986 q^{-7} -2302 q^{-8} +2518 q^{-9} +4858 q^{-10} +2522 q^{-11} -2125 q^{-12} -4596 q^{-13} -2701 q^{-14} +1618 q^{-15} +4241 q^{-16} +2861 q^{-17} -1051 q^{-18} -3791 q^{-19} -2940 q^{-20} +470 q^{-21} +3153 q^{-22} +2928 q^{-23} +182 q^{-24} -2507 q^{-25} -2764 q^{-26} -662 q^{-27} +1697 q^{-28} +2436 q^{-29} +1124 q^{-30} -1003 q^{-31} -1997 q^{-32} -1260 q^{-33} +304 q^{-34} +1440 q^{-35} +1314 q^{-36} +148 q^{-37} -909 q^{-38} -1096 q^{-39} -465 q^{-40} +425 q^{-41} +855 q^{-42} +538 q^{-43} -89 q^{-44} -531 q^{-45} -512 q^{-46} -112 q^{-47} +297 q^{-48} +378 q^{-49} +176 q^{-50} -101 q^{-51} -251 q^{-52} -177 q^{-53} +17 q^{-54} +141 q^{-55} +120 q^{-56} +28 q^{-57} -59 q^{-58} -84 q^{-59} -33 q^{-60} +29 q^{-61} +42 q^{-62} +18 q^{-63} -2 q^{-64} -18 q^{-65} -20 q^{-66} +4 q^{-67} +11 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 37]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 37]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16],
X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16],
X[17, 9, 18, 8]]</nowiki></pre></td></tr>
X[17, 9, 18, 8]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 37]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 37]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 37]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 12, 16, 2, 6, 18, 8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 37]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 37]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 37]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 12, 16, 2, 6, 18, 8]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 37]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_37_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 37]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 37]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, {4, 7}, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 37]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 11 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 37]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 37]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_37_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 37]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, {4, 7}, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 37]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 11 2
19 + -- - -- - 11 t + 2 t
19 + -- - -- - 11 t + 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 37]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 37]][z]</nowiki></code></td></tr>
1 - 3 z + 2 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 37], Knot[11, NonAlternating, 100]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 - 3 z + 2 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 37]], KnotSignature[Knot[9, 37]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 37]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 4 7 8 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 37], Knot[11, NonAlternating, 100]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 37]], KnotSignature[Knot[9, 37]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{45, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 37]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 4 7 8 2 3 4
7 - q + -- - -- + -- - - - 7 q + 5 q - 2 q + q
7 - q + -- - -- + -- - - - 7 q + 5 q - 2 q + q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 37]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 37]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 -12 -10 3 -6 4 6 8 10
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 37]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 37]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 -10 3 -6 4 6 8 10
-3 - q + q + q - q + -- + q - 2 q + q + 2 q - q +
-3 - q + q + q - q + -- + q - 2 q + q + 2 q - q +
8
8
Line 144: Line 178:
12 14
12 14
q + q</nowiki></pre></td></tr>
q + q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 37]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 37]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
-4 2 2 2 z 2 2 4 2 4 2 4
-4 2 2 2 z 2 2 4 2 4 2 4
-2 + a + 2 a - z - ---- + a z - a z + z + a z
-2 + a + 2 a - z - ---- + a z - a z + z + a z
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 37]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 37]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
-4 2 5 z 3 2 2 z z 2 2
-4 2 5 z 3 2 2 z z 2 2
-2 + a - 2 a - --- - 7 a z - 2 a z + 12 z - ---- + -- + 14 a z +
-2 + a - 2 a - --- - 7 a z - 2 a z + 12 z - ---- + -- + 14 a z +
Line 176: Line 218:
5 z + ---- + 5 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z
5 z + ---- + 5 a z + 3 a z + ---- + 6 a z + 3 a z + z + a z
2 a
2 a
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 37]], Vassiliev[3][Knot[9, 37]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 37]], Vassiliev[3][Knot[9, 37]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 37]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 2 2 5 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 37]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 2 1 2 2 5 2
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 190: Line 240:
---- + --- + 4 q t + 3 q t + q t + 4 q t + q t + q t + q t
---- + --- + 4 q t + 3 q t + q t + 4 q t + q t + q t + q t
3 q t
3 q t
q t</nowiki></pre></td></tr>
q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 37], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 9 11 5 26 18 20 46 20 39 59
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 37], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 9 11 5 26 18 20 46 20 39 59
58 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -
58 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- -
14 12 11 10 9 8 7 6 5 4 3
14 12 11 10 9 8 7 6 5 4 3
Line 204: Line 258:
9 10 11 12
9 10 11 12
5 q + q - 2 q + q</nowiki></pre></td></tr>
5 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:03, 1 September 2005

9 36.gif

9_36

9 38.gif

9_38

9 37.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 37's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 37 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, -5, 6, -2, 9, -8, 3, -4, 2, -6, 5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 14 12 16 2 6 18 8
Conway Notation [3,21,21]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5,

Braid index is 5

9 37 ML.gif 9 37 AP.gif
[{11, 4}, {5, 3}, {4, 8}, {2, 5}, {7, 9}, {8, 6}, {3, 7}, {6, 1}, {10, 2}, {9, 11}, {1, 10}]

[edit Notes on presentations of 9 37]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.9894
A-Polynomial See Data:9 37/A-polynomial

[edit Notes for 9 37's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 37's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 45, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n100,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 37. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        1 -1
5       41 3
3      31  -2
1     44   0
-1    54    -1
-3   23     -1
-5  25      3
-7 12       -1
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials