10 15: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 15 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,8,-7,9,-3,4,-10,2,-4,3,-5,6,-8,7,-9,5/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=15|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-6,8,-7,9,-3,4,-10,2,-4,3,-5,6,-8,7,-9,5/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 72: | Line 40: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-8 q^{13}+5 q^{12}+7 q^{11}-17 q^{10}+11 q^9+10 q^8-26 q^7+17 q^6+13 q^5-32 q^4+16 q^3+19 q^2-32 q+10+22 q^{-1} -26 q^{-2} +3 q^{-3} +19 q^{-4} -17 q^{-5} -2 q^{-6} +13 q^{-7} -7 q^{-8} -4 q^{-9} +6 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+2 q^{32}-q^{31}-q^{29}+4 q^{28}-3 q^{27}-3 q^{26}+2 q^{25}+7 q^{24}-6 q^{23}-6 q^{22}+5 q^{21}+7 q^{20}-8 q^{19}-3 q^{18}+11 q^{17}-4 q^{16}-12 q^{15}+5 q^{14}+24 q^{13}-15 q^{12}-24 q^{11}+7 q^{10}+37 q^9-9 q^8-34 q^7-5 q^6+40 q^5+9 q^4-31 q^3-24 q^2+33 q+26-23 q^{-1} -36 q^{-2} +22 q^{-3} +37 q^{-4} -12 q^{-5} -42 q^{-6} +8 q^{-7} +40 q^{-8} +2 q^{-9} -39 q^{-10} -9 q^{-11} +31 q^{-12} +16 q^{-13} -23 q^{-14} -19 q^{-15} +14 q^{-16} +17 q^{-17} -4 q^{-18} -15 q^{-19} +9 q^{-21} +3 q^{-22} -5 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{17}-2 q^{16}+q^{15}+3 q^{14}-8 q^{13}+5 q^{12}+7 q^{11}-17 q^{10}+11 q^9+10 q^8-26 q^7+17 q^6+13 q^5-32 q^4+16 q^3+19 q^2-32 q+10+22 q^{-1} -26 q^{-2} +3 q^{-3} +19 q^{-4} -17 q^{-5} -2 q^{-6} +13 q^{-7} -7 q^{-8} -4 q^{-9} +6 q^{-10} - q^{-11} -2 q^{-12} + q^{-13} </math>|J3=<math>-q^{33}+2 q^{32}-q^{31}-q^{29}+4 q^{28}-3 q^{27}-3 q^{26}+2 q^{25}+7 q^{24}-6 q^{23}-6 q^{22}+5 q^{21}+7 q^{20}-8 q^{19}-3 q^{18}+11 q^{17}-4 q^{16}-12 q^{15}+5 q^{14}+24 q^{13}-15 q^{12}-24 q^{11}+7 q^{10}+37 q^9-9 q^8-34 q^7-5 q^6+40 q^5+9 q^4-31 q^3-24 q^2+33 q+26-23 q^{-1} -36 q^{-2} +22 q^{-3} +37 q^{-4} -12 q^{-5} -42 q^{-6} +8 q^{-7} +40 q^{-8} +2 q^{-9} -39 q^{-10} -9 q^{-11} +31 q^{-12} +16 q^{-13} -23 q^{-14} -19 q^{-15} +14 q^{-16} +17 q^{-17} -4 q^{-18} -15 q^{-19} +9 q^{-21} +3 q^{-22} -5 q^{-23} -2 q^{-24} + q^{-25} +2 q^{-26} - q^{-27} </math>|J4=<math>q^{54}-2 q^{53}+q^{52}-2 q^{50}+5 q^{49}-6 q^{48}+5 q^{47}-7 q^{45}+11 q^{44}-15 q^{43}+13 q^{42}+4 q^{41}-14 q^{40}+19 q^{39}-34 q^{38}+18 q^{37}+12 q^{36}-9 q^{35}+40 q^{34}-71 q^{33}+3 q^{32}+16 q^{31}+18 q^{30}+89 q^{29}-113 q^{28}-42 q^{27}-5 q^{26}+54 q^{25}+170 q^{24}-129 q^{23}-97 q^{22}-57 q^{21}+62 q^{20}+250 q^{19}-104 q^{18}-117 q^{17}-110 q^{16}+27 q^{15}+280 q^{14}-69 q^{13}-81 q^{12}-123 q^{11}-26 q^{10}+253 q^9-54 q^8-25 q^7-100 q^6-62 q^5+205 q^4-56 q^3+24 q^2-67 q-88+152 q^{-1} -52 q^{-2} +66 q^{-3} -35 q^{-4} -108 q^{-5} +92 q^{-6} -52 q^{-7} +99 q^{-8} +9 q^{-9} -104 q^{-10} +30 q^{-11} -71 q^{-12} +102 q^{-13} +54 q^{-14} -62 q^{-15} -3 q^{-16} -100 q^{-17} +63 q^{-18} +69 q^{-19} -5 q^{-20} +9 q^{-21} -102 q^{-22} +8 q^{-23} +41 q^{-24} +26 q^{-25} +39 q^{-26} -66 q^{-27} -20 q^{-28} + q^{-29} +15 q^{-30} +45 q^{-31} -20 q^{-32} -13 q^{-33} -15 q^{-34} -4 q^{-35} +25 q^{-36} -7 q^{-39} -7 q^{-40} +6 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math>|J5=<math>-q^{80}+2 q^{79}-q^{78}+2 q^{76}-2 q^{75}-3 q^{74}+4 q^{73}-2 q^{72}-q^{71}+7 q^{70}-3 q^{69}-5 q^{68}+4 q^{67}-6 q^{66}-4 q^{65}+14 q^{64}+5 q^{63}-q^{62}-2 q^{61}-19 q^{60}-20 q^{59}+18 q^{58}+31 q^{57}+29 q^{56}-q^{55}-55 q^{54}-72 q^{53}-3 q^{52}+82 q^{51}+119 q^{50}+40 q^{49}-123 q^{48}-196 q^{47}-79 q^{46}+154 q^{45}+296 q^{44}+149 q^{43}-191 q^{42}-408 q^{41}-244 q^{40}+210 q^{39}+529 q^{38}+357 q^{37}-195 q^{36}-637 q^{35}-509 q^{34}+167 q^{33}+729 q^{32}+620 q^{31}-73 q^{30}-761 q^{29}-770 q^{28}-5 q^{27}+776 q^{26}+812 q^{25}+116 q^{24}-703 q^{23}-880 q^{22}-183 q^{21}+651 q^{20}+827 q^{19}+247 q^{18}-547 q^{17}-805 q^{16}-259 q^{15}+485 q^{14}+707 q^{13}+273 q^{12}-395 q^{11}-668 q^{10}-258 q^9+352 q^8+574 q^7+266 q^6-267 q^5-545 q^4-263 q^3+221 q^2+451 q+279-122 q^{-1} -403 q^{-2} -276 q^{-3} +57 q^{-4} +291 q^{-5} +271 q^{-6} +38 q^{-7} -207 q^{-8} -235 q^{-9} -91 q^{-10} +88 q^{-11} +183 q^{-12} +137 q^{-13} - q^{-14} -101 q^{-15} -137 q^{-16} -88 q^{-17} +24 q^{-18} +109 q^{-19} +123 q^{-20} +62 q^{-21} -48 q^{-22} -139 q^{-23} -118 q^{-24} -13 q^{-25} +98 q^{-26} +144 q^{-27} +84 q^{-28} -46 q^{-29} -138 q^{-30} -118 q^{-31} -16 q^{-32} +88 q^{-33} +131 q^{-34} +70 q^{-35} -36 q^{-36} -107 q^{-37} -91 q^{-38} -19 q^{-39} +60 q^{-40} +92 q^{-41} +52 q^{-42} -16 q^{-43} -63 q^{-44} -63 q^{-45} -19 q^{-46} +31 q^{-47} +50 q^{-48} +34 q^{-49} +2 q^{-50} -34 q^{-51} -34 q^{-52} -10 q^{-53} +8 q^{-54} +22 q^{-55} +20 q^{-56} -14 q^{-58} -9 q^{-59} -5 q^{-60} +9 q^{-62} +5 q^{-63} -2 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math>|J6=<math>q^{111}-2 q^{110}+q^{109}-2 q^{107}+2 q^{106}+5 q^{104}-7 q^{103}+3 q^{102}+q^{101}-9 q^{100}+5 q^{99}+q^{98}+11 q^{97}-12 q^{96}+9 q^{95}+q^{94}-28 q^{93}+7 q^{92}+6 q^{91}+23 q^{90}-10 q^{89}+24 q^{88}-2 q^{87}-72 q^{86}-3 q^{85}+8 q^{84}+52 q^{83}+20 q^{82}+66 q^{81}-8 q^{80}-166 q^{79}-55 q^{78}-10 q^{77}+112 q^{76}+119 q^{75}+173 q^{74}-17 q^{73}-350 q^{72}-207 q^{71}-69 q^{70}+238 q^{69}+355 q^{68}+396 q^{67}-46 q^{66}-694 q^{65}-540 q^{64}-194 q^{63}+478 q^{62}+821 q^{61}+811 q^{60}-81 q^{59}-1249 q^{58}-1151 q^{57}-478 q^{56}+785 q^{55}+1552 q^{54}+1522 q^{53}+33 q^{52}-1889 q^{51}-2047 q^{50}-1078 q^{49}+904 q^{48}+2342 q^{47}+2515 q^{46}+522 q^{45}-2251 q^{44}-2949 q^{43}-1979 q^{42}+569 q^{41}+2759 q^{40}+3437 q^{39}+1334 q^{38}-2062 q^{37}-3380 q^{36}-2770 q^{35}-105 q^{34}+2563 q^{33}+3809 q^{32}+2013 q^{31}-1504 q^{30}-3173 q^{29}-3019 q^{28}-649 q^{27}+2009 q^{26}+3576 q^{25}+2210 q^{24}-1025 q^{23}-2653 q^{22}-2797 q^{21}-828 q^{20}+1513 q^{19}+3127 q^{18}+2098 q^{17}-769 q^{16}-2197 q^{15}-2500 q^{14}-861 q^{13}+1144 q^{12}+2758 q^{11}+2026 q^{10}-507 q^9-1810 q^8-2319 q^7-1011 q^6+700 q^5+2401 q^4+2064 q^3-72 q^2-1302 q-2107-1250 q^{-1} +88 q^{-2} +1862 q^{-3} +2008 q^{-4} +432 q^{-5} -612 q^{-6} -1664 q^{-7} -1344 q^{-8} -554 q^{-9} +1099 q^{-10} +1656 q^{-11} +752 q^{-12} +109 q^{-13} -961 q^{-14} -1097 q^{-15} -958 q^{-16} +291 q^{-17} +990 q^{-18} +681 q^{-19} +577 q^{-20} -198 q^{-21} -510 q^{-22} -914 q^{-23} -239 q^{-24} +248 q^{-25} +229 q^{-26} +566 q^{-27} +271 q^{-28} +142 q^{-29} -461 q^{-30} -264 q^{-31} -182 q^{-32} -282 q^{-33} +154 q^{-34} +233 q^{-35} +449 q^{-36} +25 q^{-37} +90 q^{-38} -113 q^{-39} -439 q^{-40} -242 q^{-41} -117 q^{-42} +281 q^{-43} +143 q^{-44} +368 q^{-45} +196 q^{-46} -185 q^{-47} -264 q^{-48} -320 q^{-49} -40 q^{-50} -78 q^{-51} +283 q^{-52} +307 q^{-53} +113 q^{-54} -24 q^{-55} -188 q^{-56} -125 q^{-57} -260 q^{-58} +28 q^{-59} +138 q^{-60} +149 q^{-61} +118 q^{-62} +24 q^{-63} +9 q^{-64} -197 q^{-65} -82 q^{-66} -34 q^{-67} +25 q^{-68} +59 q^{-69} +74 q^{-70} +97 q^{-71} -52 q^{-72} -31 q^{-73} -53 q^{-74} -33 q^{-75} -22 q^{-76} +17 q^{-77} +67 q^{-78} +4 q^{-79} +15 q^{-80} -10 q^{-81} -14 q^{-82} -27 q^{-83} -12 q^{-84} +19 q^{-85} + q^{-86} +11 q^{-87} +4 q^{-88} +3 q^{-89} -9 q^{-90} -7 q^{-91} +4 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{54}-2 q^{53}+q^{52}-2 q^{50}+5 q^{49}-6 q^{48}+5 q^{47}-7 q^{45}+11 q^{44}-15 q^{43}+13 q^{42}+4 q^{41}-14 q^{40}+19 q^{39}-34 q^{38}+18 q^{37}+12 q^{36}-9 q^{35}+40 q^{34}-71 q^{33}+3 q^{32}+16 q^{31}+18 q^{30}+89 q^{29}-113 q^{28}-42 q^{27}-5 q^{26}+54 q^{25}+170 q^{24}-129 q^{23}-97 q^{22}-57 q^{21}+62 q^{20}+250 q^{19}-104 q^{18}-117 q^{17}-110 q^{16}+27 q^{15}+280 q^{14}-69 q^{13}-81 q^{12}-123 q^{11}-26 q^{10}+253 q^9-54 q^8-25 q^7-100 q^6-62 q^5+205 q^4-56 q^3+24 q^2-67 q-88+152 q^{-1} -52 q^{-2} +66 q^{-3} -35 q^{-4} -108 q^{-5} +92 q^{-6} -52 q^{-7} +99 q^{-8} +9 q^{-9} -104 q^{-10} +30 q^{-11} -71 q^{-12} +102 q^{-13} +54 q^{-14} -62 q^{-15} -3 q^{-16} -100 q^{-17} +63 q^{-18} +69 q^{-19} -5 q^{-20} +9 q^{-21} -102 q^{-22} +8 q^{-23} +41 q^{-24} +26 q^{-25} +39 q^{-26} -66 q^{-27} -20 q^{-28} + q^{-29} +15 q^{-30} +45 q^{-31} -20 q^{-32} -13 q^{-33} -15 q^{-34} -4 q^{-35} +25 q^{-36} -7 q^{-39} -7 q^{-40} +6 q^{-41} + q^{-42} +2 q^{-43} - q^{-44} -2 q^{-45} + q^{-46} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+2 q^{79}-q^{78}+2 q^{76}-2 q^{75}-3 q^{74}+4 q^{73}-2 q^{72}-q^{71}+7 q^{70}-3 q^{69}-5 q^{68}+4 q^{67}-6 q^{66}-4 q^{65}+14 q^{64}+5 q^{63}-q^{62}-2 q^{61}-19 q^{60}-20 q^{59}+18 q^{58}+31 q^{57}+29 q^{56}-q^{55}-55 q^{54}-72 q^{53}-3 q^{52}+82 q^{51}+119 q^{50}+40 q^{49}-123 q^{48}-196 q^{47}-79 q^{46}+154 q^{45}+296 q^{44}+149 q^{43}-191 q^{42}-408 q^{41}-244 q^{40}+210 q^{39}+529 q^{38}+357 q^{37}-195 q^{36}-637 q^{35}-509 q^{34}+167 q^{33}+729 q^{32}+620 q^{31}-73 q^{30}-761 q^{29}-770 q^{28}-5 q^{27}+776 q^{26}+812 q^{25}+116 q^{24}-703 q^{23}-880 q^{22}-183 q^{21}+651 q^{20}+827 q^{19}+247 q^{18}-547 q^{17}-805 q^{16}-259 q^{15}+485 q^{14}+707 q^{13}+273 q^{12}-395 q^{11}-668 q^{10}-258 q^9+352 q^8+574 q^7+266 q^6-267 q^5-545 q^4-263 q^3+221 q^2+451 q+279-122 q^{-1} -403 q^{-2} -276 q^{-3} +57 q^{-4} +291 q^{-5} +271 q^{-6} +38 q^{-7} -207 q^{-8} -235 q^{-9} -91 q^{-10} +88 q^{-11} +183 q^{-12} +137 q^{-13} - q^{-14} -101 q^{-15} -137 q^{-16} -88 q^{-17} +24 q^{-18} +109 q^{-19} +123 q^{-20} +62 q^{-21} -48 q^{-22} -139 q^{-23} -118 q^{-24} -13 q^{-25} +98 q^{-26} +144 q^{-27} +84 q^{-28} -46 q^{-29} -138 q^{-30} -118 q^{-31} -16 q^{-32} +88 q^{-33} +131 q^{-34} +70 q^{-35} -36 q^{-36} -107 q^{-37} -91 q^{-38} -19 q^{-39} +60 q^{-40} +92 q^{-41} +52 q^{-42} -16 q^{-43} -63 q^{-44} -63 q^{-45} -19 q^{-46} +31 q^{-47} +50 q^{-48} +34 q^{-49} +2 q^{-50} -34 q^{-51} -34 q^{-52} -10 q^{-53} +8 q^{-54} +22 q^{-55} +20 q^{-56} -14 q^{-58} -9 q^{-59} -5 q^{-60} +9 q^{-62} +5 q^{-63} -2 q^{-64} -2 q^{-65} - q^{-66} -2 q^{-67} + q^{-68} +2 q^{-69} - q^{-70} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{111}-2 q^{110}+q^{109}-2 q^{107}+2 q^{106}+5 q^{104}-7 q^{103}+3 q^{102}+q^{101}-9 q^{100}+5 q^{99}+q^{98}+11 q^{97}-12 q^{96}+9 q^{95}+q^{94}-28 q^{93}+7 q^{92}+6 q^{91}+23 q^{90}-10 q^{89}+24 q^{88}-2 q^{87}-72 q^{86}-3 q^{85}+8 q^{84}+52 q^{83}+20 q^{82}+66 q^{81}-8 q^{80}-166 q^{79}-55 q^{78}-10 q^{77}+112 q^{76}+119 q^{75}+173 q^{74}-17 q^{73}-350 q^{72}-207 q^{71}-69 q^{70}+238 q^{69}+355 q^{68}+396 q^{67}-46 q^{66}-694 q^{65}-540 q^{64}-194 q^{63}+478 q^{62}+821 q^{61}+811 q^{60}-81 q^{59}-1249 q^{58}-1151 q^{57}-478 q^{56}+785 q^{55}+1552 q^{54}+1522 q^{53}+33 q^{52}-1889 q^{51}-2047 q^{50}-1078 q^{49}+904 q^{48}+2342 q^{47}+2515 q^{46}+522 q^{45}-2251 q^{44}-2949 q^{43}-1979 q^{42}+569 q^{41}+2759 q^{40}+3437 q^{39}+1334 q^{38}-2062 q^{37}-3380 q^{36}-2770 q^{35}-105 q^{34}+2563 q^{33}+3809 q^{32}+2013 q^{31}-1504 q^{30}-3173 q^{29}-3019 q^{28}-649 q^{27}+2009 q^{26}+3576 q^{25}+2210 q^{24}-1025 q^{23}-2653 q^{22}-2797 q^{21}-828 q^{20}+1513 q^{19}+3127 q^{18}+2098 q^{17}-769 q^{16}-2197 q^{15}-2500 q^{14}-861 q^{13}+1144 q^{12}+2758 q^{11}+2026 q^{10}-507 q^9-1810 q^8-2319 q^7-1011 q^6+700 q^5+2401 q^4+2064 q^3-72 q^2-1302 q-2107-1250 q^{-1} +88 q^{-2} +1862 q^{-3} +2008 q^{-4} +432 q^{-5} -612 q^{-6} -1664 q^{-7} -1344 q^{-8} -554 q^{-9} +1099 q^{-10} +1656 q^{-11} +752 q^{-12} +109 q^{-13} -961 q^{-14} -1097 q^{-15} -958 q^{-16} +291 q^{-17} +990 q^{-18} +681 q^{-19} +577 q^{-20} -198 q^{-21} -510 q^{-22} -914 q^{-23} -239 q^{-24} +248 q^{-25} +229 q^{-26} +566 q^{-27} +271 q^{-28} +142 q^{-29} -461 q^{-30} -264 q^{-31} -182 q^{-32} -282 q^{-33} +154 q^{-34} +233 q^{-35} +449 q^{-36} +25 q^{-37} +90 q^{-38} -113 q^{-39} -439 q^{-40} -242 q^{-41} -117 q^{-42} +281 q^{-43} +143 q^{-44} +368 q^{-45} +196 q^{-46} -185 q^{-47} -264 q^{-48} -320 q^{-49} -40 q^{-50} -78 q^{-51} +283 q^{-52} +307 q^{-53} +113 q^{-54} -24 q^{-55} -188 q^{-56} -125 q^{-57} -260 q^{-58} +28 q^{-59} +138 q^{-60} +149 q^{-61} +118 q^{-62} +24 q^{-63} +9 q^{-64} -197 q^{-65} -82 q^{-66} -34 q^{-67} +25 q^{-68} +59 q^{-69} +74 q^{-70} +97 q^{-71} -52 q^{-72} -31 q^{-73} -53 q^{-74} -33 q^{-75} -22 q^{-76} +17 q^{-77} +67 q^{-78} +4 q^{-79} +15 q^{-80} -10 q^{-81} -14 q^{-82} -27 q^{-83} -12 q^{-84} +19 q^{-85} + q^{-86} +11 q^{-87} +4 q^{-88} +3 q^{-89} -9 q^{-90} -7 q^{-91} +4 q^{-92} -2 q^{-93} +2 q^{-94} + q^{-95} +2 q^{-96} - q^{-97} -2 q^{-98} + q^{-99} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 15]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[9, 14, 10, 15], X[13, 10, 14, 11], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[9, 14, 10, 15], X[13, 10, 14, 11], |
|||
X[15, 1, 16, 20], X[5, 17, 6, 16], X[7, 19, 8, 18], X[17, 7, 18, 6], |
X[15, 1, 16, 20], X[5, 17, 6, 16], X[7, 19, 8, 18], X[17, 7, 18, 6], |
||
X[19, 9, 20, 8], X[11, 2, 12, 3]]</nowiki></ |
X[19, 9, 20, 8], X[11, 2, 12, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 15]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -6, 8, -7, 9, -3, 4, -10, 2, -4, 3, -5, 6, -8, |
|||
7, -9, 5]</nowiki></ |
7, -9, 5]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 15]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 15]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, 16, 18, 14, 2, 10, 20, 6, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 1, -2, 1, -2, -3, 2, -3, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 15]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_15_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 15]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 15]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 15]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 15]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_15_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 15]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 15]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 9 2 3 |
|||
-9 + -- - -- + - + 9 t - 6 t + 2 t |
-9 + -- - -- + - + 9 t - 6 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 15]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 15]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 6 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 15]], KnotSignature[Knot[10, 15]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{43, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 3 5 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 15]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 15]], KnotSignature[Knot[10, 15]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{43, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 15]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 2 3 5 2 3 4 5 6 |
|||
-6 - q + -- - -- + - + 7 q - 6 q + 6 q - 4 q + 2 q - q |
-6 - q + -- - -- + - + 7 q - 6 q + 6 q - 4 q + 2 q - q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 15]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 15]}</nowiki></code></td></tr> |
|||
1 - q + q - q + q + q + 3 q + q - q - q - q</nowiki></pre></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 15]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 15]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -4 -2 2 4 6 10 12 14 18 |
|||
1 - q + q - q + q + q + 3 q + q - q - q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 15]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 |
|||
2 3 2 2 3 z 5 z 2 2 4 z 4 z |
2 3 2 2 3 z 5 z 2 2 4 z 4 z |
||
1 - -- + -- - a + 4 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
1 - -- + -- - a + 4 z - ---- + ---- - 3 a z + 4 z - -- + ---- - |
||
Line 154: | Line 192: | ||
a z + z + -- |
a z + z + -- |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 15]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 15]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
2 3 2 z z 3 z 3 2 z 7 z |
2 3 2 z z 3 z 3 2 z 7 z |
||
1 - -- - -- + a - -- + -- + --- - 3 a z - 2 a z - 7 z - -- + ---- + |
1 - -- - -- + a - -- + -- + --- - 3 a z - 2 a z - 7 z - -- + ---- + |
||
Line 185: | Line 227: | ||
4 z + ---- + 2 a z + -- + a z |
4 z + ---- + 2 a z + -- + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 15]], Vassiliev[3][Knot[10, 15]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 15]], Vassiliev[3][Knot[10, 15]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 15]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 15]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 2 1 3 2 |
|||
4 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
4 q + 4 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
||
9 5 7 4 5 4 5 3 3 3 3 2 2 |
9 5 7 4 5 4 5 3 3 3 3 2 2 |
||
Line 201: | Line 251: | ||
9 4 11 4 13 5 |
9 4 11 4 13 5 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 15], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 15], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 2 -11 6 4 7 13 2 17 19 3 26 |
|||
10 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
10 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
||
12 10 9 8 7 6 5 4 3 2 |
12 10 9 8 7 6 5 4 3 2 |
||
Line 214: | Line 268: | ||
9 10 11 12 13 14 15 16 17 |
9 10 11 12 13 14 15 16 17 |
||
11 q - 17 q + 7 q + 5 q - 8 q + 3 q + q - 2 q + q</nowiki></ |
11 q - 17 q + 7 q + 5 q - 8 q + 3 q + q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X9,14,10,15 X13,10,14,11 X15,1,16,20 X5,17,6,16 X7,19,8,18 X17,7,18,6 X19,9,20,8 X11,2,12,3 |
Gauss code | -1, 10, -2, 1, -6, 8, -7, 9, -3, 4, -10, 2, -4, 3, -5, 6, -8, 7, -9, 5 |
Dowker-Thistlethwaite code | 4 12 16 18 14 2 10 20 6 8 |
Conway Notation | [4132] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 6}, {1, 10}, {9, 11}, {10, 12}, {11, 8}, {7, 9}, {8, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 7}] |
[edit Notes on presentations of 10 15]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 15"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X9,14,10,15 X13,10,14,11 X15,1,16,20 X5,17,6,16 X7,19,8,18 X17,7,18,6 X19,9,20,8 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -6, 8, -7, 9, -3, 4, -10, 2, -4, 3, -5, 6, -8, 7, -9, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 16 18 14 2 10 20 6 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[4132] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 6}, {1, 10}, {9, 11}, {10, 12}, {11, 8}, {7, 9}, {8, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 15"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 43, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 15"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|