10 42: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 42 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,7,-8,6,-10,2,-3,4,-6,9,-5,8,-7,5,-9,3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=42|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,7,-8,6,-10,2,-3,4,-6,9,-5,8,-7,5,-9,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 27: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[10_75]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_75]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 74: | Line 41: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-17 q^{11}+q^{10}+36 q^9-47 q^8-8 q^7+87 q^6-83 q^5-33 q^4+142 q^3-102 q^2-64 q+171-92 q^{-1} -82 q^{-2} +155 q^{-3} -59 q^{-4} -77 q^{-5} +105 q^{-6} -23 q^{-7} -53 q^{-8} +49 q^{-9} -2 q^{-10} -23 q^{-11} +13 q^{-12} +2 q^{-13} -4 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+14 q^{25}+2 q^{24}-28 q^{23}-8 q^{22}+54 q^{21}+20 q^{20}-92 q^{19}-48 q^{18}+147 q^{17}+96 q^{16}-213 q^{15}-169 q^{14}+276 q^{13}+281 q^{12}-343 q^{11}-402 q^{10}+373 q^9+556 q^8-398 q^7-686 q^6+372 q^5+820 q^4-342 q^3-901 q^2+269 q+965-201 q^{-1} -966 q^{-2} +111 q^{-3} +933 q^{-4} -22 q^{-5} -861 q^{-6} -58 q^{-7} +750 q^{-8} +130 q^{-9} -621 q^{-10} -176 q^{-11} +478 q^{-12} +197 q^{-13} -338 q^{-14} -194 q^{-15} +221 q^{-16} +162 q^{-17} -123 q^{-18} -125 q^{-19} +62 q^{-20} +80 q^{-21} -21 q^{-22} -50 q^{-23} +8 q^{-24} +22 q^{-25} -8 q^{-27} -2 q^{-28} +4 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-17 q^{11}+q^{10}+36 q^9-47 q^8-8 q^7+87 q^6-83 q^5-33 q^4+142 q^3-102 q^2-64 q+171-92 q^{-1} -82 q^{-2} +155 q^{-3} -59 q^{-4} -77 q^{-5} +105 q^{-6} -23 q^{-7} -53 q^{-8} +49 q^{-9} -2 q^{-10} -23 q^{-11} +13 q^{-12} +2 q^{-13} -4 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+14 q^{25}+2 q^{24}-28 q^{23}-8 q^{22}+54 q^{21}+20 q^{20}-92 q^{19}-48 q^{18}+147 q^{17}+96 q^{16}-213 q^{15}-169 q^{14}+276 q^{13}+281 q^{12}-343 q^{11}-402 q^{10}+373 q^9+556 q^8-398 q^7-686 q^6+372 q^5+820 q^4-342 q^3-901 q^2+269 q+965-201 q^{-1} -966 q^{-2} +111 q^{-3} +933 q^{-4} -22 q^{-5} -861 q^{-6} -58 q^{-7} +750 q^{-8} +130 q^{-9} -621 q^{-10} -176 q^{-11} +478 q^{-12} +197 q^{-13} -338 q^{-14} -194 q^{-15} +221 q^{-16} +162 q^{-17} -123 q^{-18} -125 q^{-19} +62 q^{-20} +80 q^{-21} -21 q^{-22} -50 q^{-23} +8 q^{-24} +22 q^{-25} -8 q^{-27} -2 q^{-28} +4 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-17 q^{44}+6 q^{43}+24 q^{42}-13 q^{41}+12 q^{40}-70 q^{39}+19 q^{38}+101 q^{37}-17 q^{36}+10 q^{35}-238 q^{34}+19 q^{33}+311 q^{32}+79 q^{31}+21 q^{30}-675 q^{29}-135 q^{28}+698 q^{27}+487 q^{26}+220 q^{25}-1479 q^{24}-730 q^{23}+1067 q^{22}+1355 q^{21}+962 q^{20}-2441 q^{19}-1952 q^{18}+1001 q^{17}+2480 q^{16}+2420 q^{15}-3080 q^{14}-3536 q^{13}+252 q^{12}+3362 q^{11}+4275 q^{10}-3068 q^9-4903 q^8-964 q^7+3638 q^6+5911 q^5-2472 q^4-5610 q^3-2202 q^2+3290 q+6874-1547 q^{-1} -5539 q^{-2} -3141 q^{-3} +2454 q^{-4} +6992 q^{-5} -472 q^{-6} -4735 q^{-7} -3651 q^{-8} +1273 q^{-9} +6272 q^{-10} +567 q^{-11} -3343 q^{-12} -3599 q^{-13} +2 q^{-14} +4813 q^{-15} +1257 q^{-16} -1695 q^{-17} -2915 q^{-18} -935 q^{-19} +2990 q^{-20} +1333 q^{-21} -344 q^{-22} -1814 q^{-23} -1195 q^{-24} +1390 q^{-25} +896 q^{-26} +311 q^{-27} -791 q^{-28} -882 q^{-29} +436 q^{-30} +370 q^{-31} +355 q^{-32} -201 q^{-33} -428 q^{-34} +77 q^{-35} +75 q^{-36} +180 q^{-37} -12 q^{-38} -138 q^{-39} +7 q^{-40} -5 q^{-41} +51 q^{-42} +10 q^{-43} -28 q^{-44} + q^{-45} -5 q^{-46} +8 q^{-47} +2 q^{-48} -4 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+9 q^{68}-2 q^{67}-19 q^{66}+6 q^{65}+14 q^{64}+5 q^{63}+15 q^{62}-22 q^{61}-61 q^{60}-4 q^{59}+76 q^{58}+92 q^{57}+32 q^{56}-123 q^{55}-246 q^{54}-94 q^{53}+247 q^{52}+472 q^{51}+268 q^{50}-362 q^{49}-895 q^{48}-652 q^{47}+441 q^{46}+1525 q^{45}+1390 q^{44}-335 q^{43}-2369 q^{42}-2609 q^{41}-174 q^{40}+3295 q^{39}+4448 q^{38}+1336 q^{37}-4089 q^{36}-6891 q^{35}-3399 q^{34}+4446 q^{33}+9727 q^{32}+6524 q^{31}-3918 q^{30}-12778 q^{29}-10675 q^{28}+2413 q^{27}+15418 q^{26}+15569 q^{25}+515 q^{24}-17499 q^{23}-20927 q^{22}-4338 q^{21}+18430 q^{20}+26052 q^{19}+9281 q^{18}-18367 q^{17}-30748 q^{16}-14368 q^{15}+17093 q^{14}+34404 q^{13}+19693 q^{12}-15088 q^{11}-37109 q^{10}-24325 q^9+12329 q^8+38592 q^7+28556 q^6-9407 q^5-39128 q^4-31716 q^3+6170 q^2+38607 q+34306-3005 q^{-1} -37344 q^{-2} -35844 q^{-3} -297 q^{-4} +35133 q^{-5} +36751 q^{-6} +3586 q^{-7} -32176 q^{-8} -36748 q^{-9} -6833 q^{-10} +28326 q^{-11} +35842 q^{-12} +9991 q^{-13} -23743 q^{-14} -33989 q^{-15} -12724 q^{-16} +18600 q^{-17} +31012 q^{-18} +14857 q^{-19} -13144 q^{-20} -27139 q^{-21} -16043 q^{-22} +7881 q^{-23} +22452 q^{-24} +16124 q^{-25} -3187 q^{-26} -17379 q^{-27} -15097 q^{-28} -508 q^{-29} +12393 q^{-30} +13096 q^{-31} +2967 q^{-32} -7882 q^{-33} -10516 q^{-34} -4214 q^{-35} +4304 q^{-36} +7722 q^{-37} +4377 q^{-38} -1692 q^{-39} -5196 q^{-40} -3838 q^{-41} +175 q^{-42} +3072 q^{-43} +2946 q^{-44} +616 q^{-45} -1635 q^{-46} -2023 q^{-47} -747 q^{-48} +673 q^{-49} +1213 q^{-50} +709 q^{-51} -216 q^{-52} -684 q^{-53} -466 q^{-54} +9 q^{-55} +304 q^{-56} +297 q^{-57} +66 q^{-58} -147 q^{-59} -157 q^{-60} -43 q^{-61} +52 q^{-62} +59 q^{-63} +40 q^{-64} -9 q^{-65} -42 q^{-66} -11 q^{-67} +10 q^{-68} +5 q^{-69} +4 q^{-70} +5 q^{-71} -8 q^{-72} -2 q^{-73} +4 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-13 q^{97}-3 q^{96}+26 q^{95}-16 q^{94}-8 q^{93}-15 q^{92}+43 q^{91}-24 q^{90}-10 q^{89}+86 q^{88}-60 q^{87}-70 q^{86}-82 q^{85}+142 q^{84}+12 q^{83}+58 q^{82}+278 q^{81}-188 q^{80}-357 q^{79}-452 q^{78}+246 q^{77}+226 q^{76}+558 q^{75}+1074 q^{74}-247 q^{73}-1234 q^{72}-1957 q^{71}-386 q^{70}+400 q^{69}+2247 q^{68}+3991 q^{67}+1120 q^{66}-2506 q^{65}-6126 q^{64}-4255 q^{63}-1677 q^{62}+4993 q^{61}+11604 q^{60}+8038 q^{59}-883 q^{58}-13020 q^{57}-15336 q^{56}-12243 q^{55}+4104 q^{54}+24111 q^{53}+26411 q^{52}+12367 q^{51}-16249 q^{50}-33986 q^{49}-39308 q^{48}-11906 q^{47}+33120 q^{46}+56719 q^{45}+47214 q^{44}-1478 q^{43}-49786 q^{42}-83078 q^{41}-54530 q^{40}+21699 q^{39}+86415 q^{38}+103029 q^{37}+43737 q^{36}-43908 q^{35}-128648 q^{34}-121598 q^{33}-22705 q^{32}+95027 q^{31}+162497 q^{30}+115410 q^{29}-4531 q^{28}-154179 q^{27}-193435 q^{26}-94056 q^{25}+71254 q^{24}+202829 q^{23}+192258 q^{22}+60606 q^{21}-148641 q^{20}-246790 q^{19}-170374 q^{18}+22996 q^{17}+213252 q^{16}+251697 q^{15}+130253 q^{14}-118981 q^{13}-271255 q^{12}-230869 q^{11}-31288 q^{10}+199336 q^9+284430 q^8+186735 q^7-79907 q^6-271004 q^5-268101 q^4-78381 q^3+172140 q^2+293833 q+225157-40151 q^{-1} -253840 q^{-2} -285199 q^{-3} -116420 q^{-4} +136678 q^{-5} +285172 q^{-6} +248726 q^{-7} +851 q^{-8} -221687 q^{-9} -285311 q^{-10} -148659 q^{-11} +90808 q^{-12} +257811 q^{-13} +258526 q^{-14} +45577 q^{-15} -171321 q^{-16} -265266 q^{-17} -173522 q^{-18} +33490 q^{-19} +207469 q^{-20} +248492 q^{-21} +88868 q^{-22} -103404 q^{-23} -219323 q^{-24} -181014 q^{-25} -26187 q^{-26} +136032 q^{-27} +210884 q^{-28} +116148 q^{-29} -30797 q^{-30} -149949 q^{-31} -160412 q^{-32} -69449 q^{-33} +59047 q^{-34} +148227 q^{-35} +113814 q^{-36} +24490 q^{-37} -74446 q^{-38} -113579 q^{-39} -80950 q^{-40} +89 q^{-41} +78817 q^{-42} +83485 q^{-43} +46746 q^{-44} -16736 q^{-45} -58887 q^{-46} -63031 q^{-47} -26233 q^{-48} +25938 q^{-49} +43531 q^{-50} +39656 q^{-51} +10400 q^{-52} -17987 q^{-53} -34183 q^{-54} -25159 q^{-55} +233 q^{-56} +13729 q^{-57} +21341 q^{-58} +13322 q^{-59} +829 q^{-60} -12270 q^{-61} -13760 q^{-62} -5111 q^{-63} +502 q^{-64} +7282 q^{-65} +7283 q^{-66} +4257 q^{-67} -2360 q^{-68} -4827 q^{-69} -2949 q^{-70} -1956 q^{-71} +1254 q^{-72} +2351 q^{-73} +2525 q^{-74} +73 q^{-75} -1059 q^{-76} -816 q^{-77} -1118 q^{-78} -105 q^{-79} +411 q^{-80} +912 q^{-81} +171 q^{-82} -135 q^{-83} -75 q^{-84} -345 q^{-85} -128 q^{-86} +3 q^{-87} +245 q^{-88} +38 q^{-89} -11 q^{-90} +25 q^{-91} -70 q^{-92} -34 q^{-93} -21 q^{-94} +56 q^{-95} +2 q^{-96} -9 q^{-97} +13 q^{-98} -10 q^{-99} -4 q^{-100} -5 q^{-101} +8 q^{-102} +2 q^{-103} -4 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+18 q^{131}-4 q^{130}-16 q^{129}+10 q^{128}+2 q^{127}+16 q^{126}-21 q^{125}-42 q^{124}+53 q^{123}-26 q^{121}+44 q^{120}+13 q^{119}+66 q^{118}-77 q^{117}-197 q^{116}+37 q^{115}-9 q^{114}+38 q^{113}+258 q^{112}+169 q^{111}+265 q^{110}-187 q^{109}-760 q^{108}-431 q^{107}-399 q^{106}+176 q^{105}+1122 q^{104}+1212 q^{103}+1409 q^{102}+17 q^{101}-2189 q^{100}-2711 q^{99}-2958 q^{98}-857 q^{97}+2958 q^{96}+5152 q^{95}+6668 q^{94}+3479 q^{93}-3579 q^{92}-8987 q^{91}-12907 q^{90}-9112 q^{89}+2078 q^{88}+13363 q^{87}+23059 q^{86}+20467 q^{85}+3910 q^{84}-16927 q^{83}-37372 q^{82}-39863 q^{81}-18405 q^{80}+15834 q^{79}+54408 q^{78}+69469 q^{77}+46745 q^{76}-3985 q^{75}-70303 q^{74}-109765 q^{73}-93765 q^{72}-26432 q^{71}+77235 q^{70}+157054 q^{69}+162762 q^{68}+84805 q^{67}-64195 q^{66}-203636 q^{65}-252925 q^{64}-178244 q^{63}+18404 q^{62}+236472 q^{61}+357199 q^{60}+309554 q^{59}+72475 q^{58}-239009 q^{57}-462581 q^{56}-475372 q^{55}-215963 q^{54}+195751 q^{53}+551107 q^{52}+662844 q^{51}+411680 q^{50}-93172 q^{49}-602378 q^{48}-854811 q^{47}-651727 q^{46}-72082 q^{45}+601272 q^{44}+1028201 q^{43}+916785 q^{42}+296158 q^{41}-535701 q^{40}-1163497 q^{39}-1187158 q^{38}-563742 q^{37}+408420 q^{36}+1245076 q^{35}+1436582 q^{34}+854364 q^{33}-225537 q^{32}-1266872 q^{31}-1649021 q^{30}-1144652 q^{29}+6973 q^{28}+1231458 q^{27}+1809274 q^{26}+1413656 q^{25}+230043 q^{24}-1149070 q^{23}-1916400 q^{22}-1645792 q^{21}-463543 q^{20}+1034026 q^{19}+1971461 q^{18}+1833493 q^{17}+680777 q^{16}-902127 q^{15}-1985471 q^{14}-1975202 q^{13}-870106 q^{12}+765068 q^{11}+1966588 q^{10}+2076303 q^9+1031400 q^8-631895 q^7-1927208 q^6-2143080 q^5-1164334 q^4+504543 q^3+1870844 q^2+2183982 q+1277658-381868 q^{-1} -1802949 q^{-2} -2204147 q^{-3} -1374811 q^{-4} +258317 q^{-5} +1718961 q^{-6} +2205824 q^{-7} +1463840 q^{-8} -127526 q^{-9} -1616309 q^{-10} -2187595 q^{-11} -1544878 q^{-12} -15206 q^{-13} +1486754 q^{-14} +2143372 q^{-15} +1617049 q^{-16} +173080 q^{-17} -1325047 q^{-18} -2066590 q^{-19} -1673538 q^{-20} -342493 q^{-21} +1128311 q^{-22} +1948019 q^{-23} +1703789 q^{-24} +516567 q^{-25} -897664 q^{-26} -1782938 q^{-27} -1697143 q^{-28} -681338 q^{-29} +642729 q^{-30} +1569865 q^{-31} +1641511 q^{-32} +820823 q^{-33} -376909 q^{-34} -1314951 q^{-35} -1531842 q^{-36} -918421 q^{-37} +121088 q^{-38} +1031950 q^{-39} +1367720 q^{-40} +960514 q^{-41} +104171 q^{-42} -740119 q^{-43} -1158720 q^{-44} -941446 q^{-45} -279709 q^{-46} +463105 q^{-47} +921634 q^{-48} +863573 q^{-49} +393030 q^{-50} -222568 q^{-51} -677958 q^{-52} -739167 q^{-53} -441543 q^{-54} +35159 q^{-55} +450853 q^{-56} +587036 q^{-57} +431464 q^{-58} +91177 q^{-59} -258616 q^{-60} -428329 q^{-61} -378044 q^{-62} -158524 q^{-63} +113143 q^{-64} +282537 q^{-65} +299690 q^{-66} +176997 q^{-67} -16501 q^{-68} -163584 q^{-69} -215248 q^{-70} -161283 q^{-71} -36153 q^{-72} +76965 q^{-73} +138478 q^{-74} +128257 q^{-75} +56006 q^{-76} -22760 q^{-77} -78691 q^{-78} -90031 q^{-79} -54219 q^{-80} -6172 q^{-81} +37019 q^{-82} +56669 q^{-83} +43145 q^{-84} +16682 q^{-85} -12917 q^{-86} -31391 q^{-87} -28858 q^{-88} -17206 q^{-89} +333 q^{-90} +15060 q^{-91} +17365 q^{-92} +13498 q^{-93} +3750 q^{-94} -6076 q^{-95} -8804 q^{-96} -8679 q^{-97} -4379 q^{-98} +1471 q^{-99} +3948 q^{-100} +5180 q^{-101} +3349 q^{-102} -87 q^{-103} -1432 q^{-104} -2493 q^{-105} -2048 q^{-106} -475 q^{-107} +206 q^{-108} +1254 q^{-109} +1253 q^{-110} +311 q^{-111} -12 q^{-112} -489 q^{-113} -511 q^{-114} -192 q^{-115} -196 q^{-116} +168 q^{-117} +342 q^{-118} +104 q^{-119} +50 q^{-120} -93 q^{-121} -86 q^{-122} +2 q^{-123} -84 q^{-124} +66 q^{-126} +28 q^{-127} +15 q^{-128} -26 q^{-129} -16 q^{-130} +18 q^{-131} -14 q^{-132} -8 q^{-133} +10 q^{-134} +4 q^{-135} +5 q^{-136} -8 q^{-137} -2 q^{-138} +4 q^{-139} - q^{-140} </math>}} |
|||
coloured_jones_4 = <math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-17 q^{44}+6 q^{43}+24 q^{42}-13 q^{41}+12 q^{40}-70 q^{39}+19 q^{38}+101 q^{37}-17 q^{36}+10 q^{35}-238 q^{34}+19 q^{33}+311 q^{32}+79 q^{31}+21 q^{30}-675 q^{29}-135 q^{28}+698 q^{27}+487 q^{26}+220 q^{25}-1479 q^{24}-730 q^{23}+1067 q^{22}+1355 q^{21}+962 q^{20}-2441 q^{19}-1952 q^{18}+1001 q^{17}+2480 q^{16}+2420 q^{15}-3080 q^{14}-3536 q^{13}+252 q^{12}+3362 q^{11}+4275 q^{10}-3068 q^9-4903 q^8-964 q^7+3638 q^6+5911 q^5-2472 q^4-5610 q^3-2202 q^2+3290 q+6874-1547 q^{-1} -5539 q^{-2} -3141 q^{-3} +2454 q^{-4} +6992 q^{-5} -472 q^{-6} -4735 q^{-7} -3651 q^{-8} +1273 q^{-9} +6272 q^{-10} +567 q^{-11} -3343 q^{-12} -3599 q^{-13} +2 q^{-14} +4813 q^{-15} +1257 q^{-16} -1695 q^{-17} -2915 q^{-18} -935 q^{-19} +2990 q^{-20} +1333 q^{-21} -344 q^{-22} -1814 q^{-23} -1195 q^{-24} +1390 q^{-25} +896 q^{-26} +311 q^{-27} -791 q^{-28} -882 q^{-29} +436 q^{-30} +370 q^{-31} +355 q^{-32} -201 q^{-33} -428 q^{-34} +77 q^{-35} +75 q^{-36} +180 q^{-37} -12 q^{-38} -138 q^{-39} +7 q^{-40} -5 q^{-41} +51 q^{-42} +10 q^{-43} -28 q^{-44} + q^{-45} -5 q^{-46} +8 q^{-47} +2 q^{-48} -4 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+9 q^{68}-2 q^{67}-19 q^{66}+6 q^{65}+14 q^{64}+5 q^{63}+15 q^{62}-22 q^{61}-61 q^{60}-4 q^{59}+76 q^{58}+92 q^{57}+32 q^{56}-123 q^{55}-246 q^{54}-94 q^{53}+247 q^{52}+472 q^{51}+268 q^{50}-362 q^{49}-895 q^{48}-652 q^{47}+441 q^{46}+1525 q^{45}+1390 q^{44}-335 q^{43}-2369 q^{42}-2609 q^{41}-174 q^{40}+3295 q^{39}+4448 q^{38}+1336 q^{37}-4089 q^{36}-6891 q^{35}-3399 q^{34}+4446 q^{33}+9727 q^{32}+6524 q^{31}-3918 q^{30}-12778 q^{29}-10675 q^{28}+2413 q^{27}+15418 q^{26}+15569 q^{25}+515 q^{24}-17499 q^{23}-20927 q^{22}-4338 q^{21}+18430 q^{20}+26052 q^{19}+9281 q^{18}-18367 q^{17}-30748 q^{16}-14368 q^{15}+17093 q^{14}+34404 q^{13}+19693 q^{12}-15088 q^{11}-37109 q^{10}-24325 q^9+12329 q^8+38592 q^7+28556 q^6-9407 q^5-39128 q^4-31716 q^3+6170 q^2+38607 q+34306-3005 q^{-1} -37344 q^{-2} -35844 q^{-3} -297 q^{-4} +35133 q^{-5} +36751 q^{-6} +3586 q^{-7} -32176 q^{-8} -36748 q^{-9} -6833 q^{-10} +28326 q^{-11} +35842 q^{-12} +9991 q^{-13} -23743 q^{-14} -33989 q^{-15} -12724 q^{-16} +18600 q^{-17} +31012 q^{-18} +14857 q^{-19} -13144 q^{-20} -27139 q^{-21} -16043 q^{-22} +7881 q^{-23} +22452 q^{-24} +16124 q^{-25} -3187 q^{-26} -17379 q^{-27} -15097 q^{-28} -508 q^{-29} +12393 q^{-30} +13096 q^{-31} +2967 q^{-32} -7882 q^{-33} -10516 q^{-34} -4214 q^{-35} +4304 q^{-36} +7722 q^{-37} +4377 q^{-38} -1692 q^{-39} -5196 q^{-40} -3838 q^{-41} +175 q^{-42} +3072 q^{-43} +2946 q^{-44} +616 q^{-45} -1635 q^{-46} -2023 q^{-47} -747 q^{-48} +673 q^{-49} +1213 q^{-50} +709 q^{-51} -216 q^{-52} -684 q^{-53} -466 q^{-54} +9 q^{-55} +304 q^{-56} +297 q^{-57} +66 q^{-58} -147 q^{-59} -157 q^{-60} -43 q^{-61} +52 q^{-62} +59 q^{-63} +40 q^{-64} -9 q^{-65} -42 q^{-66} -11 q^{-67} +10 q^{-68} +5 q^{-69} +4 q^{-70} +5 q^{-71} -8 q^{-72} -2 q^{-73} +4 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-13 q^{97}-3 q^{96}+26 q^{95}-16 q^{94}-8 q^{93}-15 q^{92}+43 q^{91}-24 q^{90}-10 q^{89}+86 q^{88}-60 q^{87}-70 q^{86}-82 q^{85}+142 q^{84}+12 q^{83}+58 q^{82}+278 q^{81}-188 q^{80}-357 q^{79}-452 q^{78}+246 q^{77}+226 q^{76}+558 q^{75}+1074 q^{74}-247 q^{73}-1234 q^{72}-1957 q^{71}-386 q^{70}+400 q^{69}+2247 q^{68}+3991 q^{67}+1120 q^{66}-2506 q^{65}-6126 q^{64}-4255 q^{63}-1677 q^{62}+4993 q^{61}+11604 q^{60}+8038 q^{59}-883 q^{58}-13020 q^{57}-15336 q^{56}-12243 q^{55}+4104 q^{54}+24111 q^{53}+26411 q^{52}+12367 q^{51}-16249 q^{50}-33986 q^{49}-39308 q^{48}-11906 q^{47}+33120 q^{46}+56719 q^{45}+47214 q^{44}-1478 q^{43}-49786 q^{42}-83078 q^{41}-54530 q^{40}+21699 q^{39}+86415 q^{38}+103029 q^{37}+43737 q^{36}-43908 q^{35}-128648 q^{34}-121598 q^{33}-22705 q^{32}+95027 q^{31}+162497 q^{30}+115410 q^{29}-4531 q^{28}-154179 q^{27}-193435 q^{26}-94056 q^{25}+71254 q^{24}+202829 q^{23}+192258 q^{22}+60606 q^{21}-148641 q^{20}-246790 q^{19}-170374 q^{18}+22996 q^{17}+213252 q^{16}+251697 q^{15}+130253 q^{14}-118981 q^{13}-271255 q^{12}-230869 q^{11}-31288 q^{10}+199336 q^9+284430 q^8+186735 q^7-79907 q^6-271004 q^5-268101 q^4-78381 q^3+172140 q^2+293833 q+225157-40151 q^{-1} -253840 q^{-2} -285199 q^{-3} -116420 q^{-4} +136678 q^{-5} +285172 q^{-6} +248726 q^{-7} +851 q^{-8} -221687 q^{-9} -285311 q^{-10} -148659 q^{-11} +90808 q^{-12} +257811 q^{-13} +258526 q^{-14} +45577 q^{-15} -171321 q^{-16} -265266 q^{-17} -173522 q^{-18} +33490 q^{-19} +207469 q^{-20} +248492 q^{-21} +88868 q^{-22} -103404 q^{-23} -219323 q^{-24} -181014 q^{-25} -26187 q^{-26} +136032 q^{-27} +210884 q^{-28} +116148 q^{-29} -30797 q^{-30} -149949 q^{-31} -160412 q^{-32} -69449 q^{-33} +59047 q^{-34} +148227 q^{-35} +113814 q^{-36} +24490 q^{-37} -74446 q^{-38} -113579 q^{-39} -80950 q^{-40} +89 q^{-41} +78817 q^{-42} +83485 q^{-43} +46746 q^{-44} -16736 q^{-45} -58887 q^{-46} -63031 q^{-47} -26233 q^{-48} +25938 q^{-49} +43531 q^{-50} +39656 q^{-51} +10400 q^{-52} -17987 q^{-53} -34183 q^{-54} -25159 q^{-55} +233 q^{-56} +13729 q^{-57} +21341 q^{-58} +13322 q^{-59} +829 q^{-60} -12270 q^{-61} -13760 q^{-62} -5111 q^{-63} +502 q^{-64} +7282 q^{-65} +7283 q^{-66} +4257 q^{-67} -2360 q^{-68} -4827 q^{-69} -2949 q^{-70} -1956 q^{-71} +1254 q^{-72} +2351 q^{-73} +2525 q^{-74} +73 q^{-75} -1059 q^{-76} -816 q^{-77} -1118 q^{-78} -105 q^{-79} +411 q^{-80} +912 q^{-81} +171 q^{-82} -135 q^{-83} -75 q^{-84} -345 q^{-85} -128 q^{-86} +3 q^{-87} +245 q^{-88} +38 q^{-89} -11 q^{-90} +25 q^{-91} -70 q^{-92} -34 q^{-93} -21 q^{-94} +56 q^{-95} +2 q^{-96} -9 q^{-97} +13 q^{-98} -10 q^{-99} -4 q^{-100} -5 q^{-101} +8 q^{-102} +2 q^{-103} -4 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+18 q^{131}-4 q^{130}-16 q^{129}+10 q^{128}+2 q^{127}+16 q^{126}-21 q^{125}-42 q^{124}+53 q^{123}-26 q^{121}+44 q^{120}+13 q^{119}+66 q^{118}-77 q^{117}-197 q^{116}+37 q^{115}-9 q^{114}+38 q^{113}+258 q^{112}+169 q^{111}+265 q^{110}-187 q^{109}-760 q^{108}-431 q^{107}-399 q^{106}+176 q^{105}+1122 q^{104}+1212 q^{103}+1409 q^{102}+17 q^{101}-2189 q^{100}-2711 q^{99}-2958 q^{98}-857 q^{97}+2958 q^{96}+5152 q^{95}+6668 q^{94}+3479 q^{93}-3579 q^{92}-8987 q^{91}-12907 q^{90}-9112 q^{89}+2078 q^{88}+13363 q^{87}+23059 q^{86}+20467 q^{85}+3910 q^{84}-16927 q^{83}-37372 q^{82}-39863 q^{81}-18405 q^{80}+15834 q^{79}+54408 q^{78}+69469 q^{77}+46745 q^{76}-3985 q^{75}-70303 q^{74}-109765 q^{73}-93765 q^{72}-26432 q^{71}+77235 q^{70}+157054 q^{69}+162762 q^{68}+84805 q^{67}-64195 q^{66}-203636 q^{65}-252925 q^{64}-178244 q^{63}+18404 q^{62}+236472 q^{61}+357199 q^{60}+309554 q^{59}+72475 q^{58}-239009 q^{57}-462581 q^{56}-475372 q^{55}-215963 q^{54}+195751 q^{53}+551107 q^{52}+662844 q^{51}+411680 q^{50}-93172 q^{49}-602378 q^{48}-854811 q^{47}-651727 q^{46}-72082 q^{45}+601272 q^{44}+1028201 q^{43}+916785 q^{42}+296158 q^{41}-535701 q^{40}-1163497 q^{39}-1187158 q^{38}-563742 q^{37}+408420 q^{36}+1245076 q^{35}+1436582 q^{34}+854364 q^{33}-225537 q^{32}-1266872 q^{31}-1649021 q^{30}-1144652 q^{29}+6973 q^{28}+1231458 q^{27}+1809274 q^{26}+1413656 q^{25}+230043 q^{24}-1149070 q^{23}-1916400 q^{22}-1645792 q^{21}-463543 q^{20}+1034026 q^{19}+1971461 q^{18}+1833493 q^{17}+680777 q^{16}-902127 q^{15}-1985471 q^{14}-1975202 q^{13}-870106 q^{12}+765068 q^{11}+1966588 q^{10}+2076303 q^9+1031400 q^8-631895 q^7-1927208 q^6-2143080 q^5-1164334 q^4+504543 q^3+1870844 q^2+2183982 q+1277658-381868 q^{-1} -1802949 q^{-2} -2204147 q^{-3} -1374811 q^{-4} +258317 q^{-5} +1718961 q^{-6} +2205824 q^{-7} +1463840 q^{-8} -127526 q^{-9} -1616309 q^{-10} -2187595 q^{-11} -1544878 q^{-12} -15206 q^{-13} +1486754 q^{-14} +2143372 q^{-15} +1617049 q^{-16} +173080 q^{-17} -1325047 q^{-18} -2066590 q^{-19} -1673538 q^{-20} -342493 q^{-21} +1128311 q^{-22} +1948019 q^{-23} +1703789 q^{-24} +516567 q^{-25} -897664 q^{-26} -1782938 q^{-27} -1697143 q^{-28} -681338 q^{-29} +642729 q^{-30} +1569865 q^{-31} +1641511 q^{-32} +820823 q^{-33} -376909 q^{-34} -1314951 q^{-35} -1531842 q^{-36} -918421 q^{-37} +121088 q^{-38} +1031950 q^{-39} +1367720 q^{-40} +960514 q^{-41} +104171 q^{-42} -740119 q^{-43} -1158720 q^{-44} -941446 q^{-45} -279709 q^{-46} +463105 q^{-47} +921634 q^{-48} +863573 q^{-49} +393030 q^{-50} -222568 q^{-51} -677958 q^{-52} -739167 q^{-53} -441543 q^{-54} +35159 q^{-55} +450853 q^{-56} +587036 q^{-57} +431464 q^{-58} +91177 q^{-59} -258616 q^{-60} -428329 q^{-61} -378044 q^{-62} -158524 q^{-63} +113143 q^{-64} +282537 q^{-65} +299690 q^{-66} +176997 q^{-67} -16501 q^{-68} -163584 q^{-69} -215248 q^{-70} -161283 q^{-71} -36153 q^{-72} +76965 q^{-73} +138478 q^{-74} +128257 q^{-75} +56006 q^{-76} -22760 q^{-77} -78691 q^{-78} -90031 q^{-79} -54219 q^{-80} -6172 q^{-81} +37019 q^{-82} +56669 q^{-83} +43145 q^{-84} +16682 q^{-85} -12917 q^{-86} -31391 q^{-87} -28858 q^{-88} -17206 q^{-89} +333 q^{-90} +15060 q^{-91} +17365 q^{-92} +13498 q^{-93} +3750 q^{-94} -6076 q^{-95} -8804 q^{-96} -8679 q^{-97} -4379 q^{-98} +1471 q^{-99} +3948 q^{-100} +5180 q^{-101} +3349 q^{-102} -87 q^{-103} -1432 q^{-104} -2493 q^{-105} -2048 q^{-106} -475 q^{-107} +206 q^{-108} +1254 q^{-109} +1253 q^{-110} +311 q^{-111} -12 q^{-112} -489 q^{-113} -511 q^{-114} -192 q^{-115} -196 q^{-116} +168 q^{-117} +342 q^{-118} +104 q^{-119} +50 q^{-120} -93 q^{-121} -86 q^{-122} +2 q^{-123} -84 q^{-124} +66 q^{-126} +28 q^{-127} +15 q^{-128} -26 q^{-129} -16 q^{-130} +18 q^{-131} -14 q^{-132} -8 q^{-133} +10 q^{-134} +4 q^{-135} +5 q^{-136} -8 q^{-137} -2 q^{-138} +4 q^{-139} - q^{-140} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 42]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 42]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 20], X[5, 13, 6, 12], |
|||
X[15, 18, 16, 19], X[13, 9, 14, 8], X[17, 7, 18, 6], X[7, 17, 8, 16], |
X[15, 18, 16, 19], X[13, 9, 14, 8], X[17, 7, 18, 6], X[7, 17, 8, 16], |
||
X[19, 14, 20, 15], X[9, 2, 10, 3]]</nowiki></ |
X[19, 14, 20, 15], X[9, 2, 10, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 42]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 42]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 7, -8, 6, -10, 2, -3, 4, -6, 9, -5, 8, -7, |
|||
5, -9, 3]</nowiki></ |
5, -9, 3]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 42]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 42]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 42]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 16, 2, 20, 8, 18, 6, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 42]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, 2, -1, 2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 42]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 42]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 42]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 42]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_42_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 42]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 42]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 19 2 3 |
|||
27 - t + -- - -- - 19 t + 7 t - t |
27 - t + -- - -- - 19 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 42]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 42]][z]</nowiki></code></td></tr> |
|||
1 + z - z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 |
|||
1 + z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 42]], KnotSignature[Knot[10, 42]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{81, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 4 7 10 13 2 3 4 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 42], Knot[10, 75]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 42]], KnotSignature[Knot[10, 42]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{81, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 42]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 4 7 10 13 2 3 4 5 |
|||
14 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q |
14 - q + -- - -- + -- - -- - 12 q + 10 q - 6 q + 3 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 42]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 42]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 42]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 2 2 2 -6 2 2 2 4 6 |
|||
-2 - q + q + --- - --- + -- - q - -- + -- + 3 q - q + q + |
-2 - q + q + --- - --- + -- - q - -- + -- + 3 q - q + q + |
||
12 10 8 4 2 |
12 10 8 4 2 |
||
Line 148: | Line 181: | ||
8 10 12 16 |
8 10 12 16 |
||
3 q - 2 q + q - q</nowiki></ |
3 q - 2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 42]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 42]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 |
|||
-4 3 2 2 z 4 z 2 2 4 2 4 2 z |
-4 3 2 2 z 4 z 2 2 4 2 4 2 z |
||
-2 - a + -- + a - 5 z - -- + ---- + 3 a z - a z - 3 z + ---- + |
-2 - a + -- + a - 5 z - -- + ---- + 3 a z - a z - 3 z + ---- + |
||
Line 158: | Line 195: | ||
2 4 6 |
2 4 6 |
||
2 a z - z</nowiki></ |
2 a z - z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 42]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 42]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-4 3 2 z z z 2 4 z 9 z 2 2 |
-4 3 2 z z z 2 4 z 9 z 2 2 |
||
-2 - a - -- - a + -- + -- - - - a z + 9 z + ---- + ---- + 6 a z + |
-2 - a - -- - a + -- + -- - - - a z + 9 z + ---- + ---- + 6 a z + |
||
Line 189: | Line 230: | ||
6 a z + 7 z + ---- + 4 a z + -- + a z |
6 a z + 7 z + ---- + 4 a z + -- + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 42]], Vassiliev[3][Knot[10, 42]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 42]], Vassiliev[3][Knot[10, 42]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 42]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 42]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 3 1 4 3 6 4 |
|||
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 206: | Line 255: | ||
7 4 9 4 11 5 |
7 4 9 4 11 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 42], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 42], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 4 2 13 23 2 49 53 23 105 77 |
|||
171 + q - --- + --- + --- - --- - --- + -- - -- - -- + --- - -- - |
171 + q - --- + --- + --- - --- - --- + -- - -- - -- + --- - -- - |
||
14 13 12 11 10 9 8 7 6 5 |
14 13 12 11 10 9 8 7 6 5 |
||
Line 220: | Line 273: | ||
7 8 9 10 11 12 13 14 15 |
7 8 9 10 11 12 13 14 15 |
||
8 q - 47 q + 36 q + q - 17 q + 9 q + q - 3 q + q</nowiki></ |
8 q - 47 q + 36 q + q - 17 q + 9 q + q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 42's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X15,18,16,19 X13,9,14,8 X17,7,18,6 X7,17,8,16 X19,14,20,15 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, -4, 7, -8, 6, -10, 2, -3, 4, -6, 9, -5, 8, -7, 5, -9, 3 |
Dowker-Thistlethwaite code | 4 10 12 16 2 20 8 18 6 14 |
Conway Notation | [2211112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{12, 7}, {1, 10}, {8, 11}, {10, 12}, {11, 6}, {7, 4}, {6, 9}, {5, 3}, {4, 8}, {2, 5}, {3, 1}, {9, 2}] |
[edit Notes on presentations of 10 42]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 42"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,1,12,20 X5,13,6,12 X15,18,16,19 X13,9,14,8 X17,7,18,6 X7,17,8,16 X19,14,20,15 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 7, -8, 6, -10, 2, -3, 4, -6, 9, -5, 8, -7, 5, -9, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 2 20 8 18 6 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2211112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 7}, {1, 10}, {8, 11}, {10, 12}, {11, 6}, {7, 4}, {6, 9}, {5, 3}, {4, 8}, {2, 5}, {3, 1}, {9, 2}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 42"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_75,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 42"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_75,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|