10 60: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 60 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-10,9,-6,7,-5,8,-9,10,-8/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=60|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-7,6,-3,4,-2,5,-10,9,-6,7,-5,8,-9,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
Line 26: | Line 15: | ||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 12 | |
|||
braid_width = 5 | |
|||
[[Invariants from Braid Theory|Length]] is 12, width is 5. |
|||
braid_index = 5 | |
|||
same_alexander = [[K11n165]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
same_jones = [[10_86]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n165]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_86]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> |
||
Line 73: | Line 41: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{12}-4 q^{11}+4 q^{10}+9 q^9-28 q^8+17 q^7+39 q^6-80 q^5+28 q^4+91 q^3-136 q^2+22 q+143-162 q^{-1} - q^{-2} +165 q^{-3} -144 q^{-4} -28 q^{-5} +147 q^{-6} -93 q^{-7} -42 q^{-8} +97 q^{-9} -39 q^{-10} -34 q^{-11} +43 q^{-12} -8 q^{-13} -15 q^{-14} +11 q^{-15} -3 q^{-17} + q^{-18} </math> | |
|||
coloured_jones_3 = <math>q^{24}-4 q^{23}+4 q^{22}+5 q^{21}-8 q^{20}-15 q^{19}+20 q^{18}+41 q^{17}-49 q^{16}-80 q^{15}+80 q^{14}+154 q^{13}-116 q^{12}-268 q^{11}+150 q^{10}+411 q^9-157 q^8-585 q^7+144 q^6+752 q^5-81 q^4-920 q^3+10 q^2+1028 q+105-1111 q^{-1} -205 q^{-2} +1115 q^{-3} +328 q^{-4} -1087 q^{-5} -422 q^{-6} +996 q^{-7} +510 q^{-8} -872 q^{-9} -566 q^{-10} +712 q^{-11} +594 q^{-12} -540 q^{-13} -580 q^{-14} +367 q^{-15} +525 q^{-16} -207 q^{-17} -446 q^{-18} +89 q^{-19} +340 q^{-20} -5 q^{-21} -237 q^{-22} -37 q^{-23} +149 q^{-24} +46 q^{-25} -81 q^{-26} -40 q^{-27} +39 q^{-28} +26 q^{-29} -15 q^{-30} -15 q^{-31} +6 q^{-32} +5 q^{-33} -3 q^{-35} + q^{-36} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{12}-4 q^{11}+4 q^{10}+9 q^9-28 q^8+17 q^7+39 q^6-80 q^5+28 q^4+91 q^3-136 q^2+22 q+143-162 q^{-1} - q^{-2} +165 q^{-3} -144 q^{-4} -28 q^{-5} +147 q^{-6} -93 q^{-7} -42 q^{-8} +97 q^{-9} -39 q^{-10} -34 q^{-11} +43 q^{-12} -8 q^{-13} -15 q^{-14} +11 q^{-15} -3 q^{-17} + q^{-18} </math>|J3=<math>q^{24}-4 q^{23}+4 q^{22}+5 q^{21}-8 q^{20}-15 q^{19}+20 q^{18}+41 q^{17}-49 q^{16}-80 q^{15}+80 q^{14}+154 q^{13}-116 q^{12}-268 q^{11}+150 q^{10}+411 q^9-157 q^8-585 q^7+144 q^6+752 q^5-81 q^4-920 q^3+10 q^2+1028 q+105-1111 q^{-1} -205 q^{-2} +1115 q^{-3} +328 q^{-4} -1087 q^{-5} -422 q^{-6} +996 q^{-7} +510 q^{-8} -872 q^{-9} -566 q^{-10} +712 q^{-11} +594 q^{-12} -540 q^{-13} -580 q^{-14} +367 q^{-15} +525 q^{-16} -207 q^{-17} -446 q^{-18} +89 q^{-19} +340 q^{-20} -5 q^{-21} -237 q^{-22} -37 q^{-23} +149 q^{-24} +46 q^{-25} -81 q^{-26} -40 q^{-27} +39 q^{-28} +26 q^{-29} -15 q^{-30} -15 q^{-31} +6 q^{-32} +5 q^{-33} -3 q^{-35} + q^{-36} </math>|J4=<math>q^{40}-4 q^{39}+4 q^{38}+5 q^{37}-12 q^{36}+5 q^{35}-12 q^{34}+32 q^{33}+22 q^{32}-82 q^{31}-q^{30}-22 q^{29}+169 q^{28}+110 q^{27}-320 q^{26}-143 q^{25}-63 q^{24}+615 q^{23}+473 q^{22}-800 q^{21}-714 q^{20}-375 q^{19}+1520 q^{18}+1528 q^{17}-1280 q^{16}-1950 q^{15}-1425 q^{14}+2619 q^{13}+3491 q^{12}-1172 q^{11}-3513 q^{10}-3439 q^9+3210 q^8+5875 q^7-126 q^6-4591 q^5-5888 q^4+2829 q^3+7705 q^2+1513 q-4619-7858 q^{-1} +1655 q^{-2} +8346 q^{-3} +3084 q^{-4} -3679 q^{-5} -8782 q^{-6} +153 q^{-7} +7773 q^{-8} +4205 q^{-9} -2126 q^{-10} -8618 q^{-11} -1359 q^{-12} +6248 q^{-13} +4757 q^{-14} -281 q^{-15} -7461 q^{-16} -2620 q^{-17} +4048 q^{-18} +4583 q^{-19} +1473 q^{-20} -5449 q^{-21} -3221 q^{-22} +1664 q^{-23} +3546 q^{-24} +2540 q^{-25} -3029 q^{-26} -2834 q^{-27} -158 q^{-28} +1950 q^{-29} +2512 q^{-30} -1016 q^{-31} -1717 q^{-32} -881 q^{-33} +550 q^{-34} +1659 q^{-35} +7 q^{-36} -623 q^{-37} -712 q^{-38} -119 q^{-39} +736 q^{-40} +192 q^{-41} -65 q^{-42} -308 q^{-43} -192 q^{-44} +215 q^{-45} +88 q^{-46} +51 q^{-47} -75 q^{-48} -88 q^{-49} +42 q^{-50} +15 q^{-51} +26 q^{-52} -8 q^{-53} -22 q^{-54} +6 q^{-55} +5 q^{-57} -3 q^{-59} + q^{-60} </math>|J5=<math>q^{60}-4 q^{59}+4 q^{58}+5 q^{57}-12 q^{56}+q^{55}+8 q^{54}+13 q^{52}-q^{51}-53 q^{50}-28 q^{49}+63 q^{48}+98 q^{47}+58 q^{46}-107 q^{45}-268 q^{44}-173 q^{43}+243 q^{42}+628 q^{41}+390 q^{40}-448 q^{39}-1214 q^{38}-955 q^{37}+629 q^{36}+2314 q^{35}+2043 q^{34}-760 q^{33}-3870 q^{32}-3950 q^{31}+379 q^{30}+5989 q^{29}+7057 q^{28}+788 q^{27}-8430 q^{26}-11461 q^{25}-3261 q^{24}+10649 q^{23}+17198 q^{22}+7522 q^{21}-12237 q^{20}-23812 q^{19}-13540 q^{18}+12335 q^{17}+30612 q^{16}+21362 q^{15}-10740 q^{14}-36811 q^{13}-30057 q^{12}+7035 q^{11}+41591 q^{10}+39116 q^9-1816 q^8-44414 q^7-47270 q^6-4751 q^5+45119 q^4+54206 q^3+11476 q^2-43822 q-58974-18273 q^{-1} +40926 q^{-2} +62017 q^{-3} +24100 q^{-4} -36876 q^{-5} -62884 q^{-6} -29276 q^{-7} +31978 q^{-8} +62395 q^{-9} +33340 q^{-10} -26575 q^{-11} -60287 q^{-12} -36755 q^{-13} +20653 q^{-14} +57144 q^{-15} +39304 q^{-16} -14307 q^{-17} -52724 q^{-18} -41185 q^{-19} +7582 q^{-20} +47206 q^{-21} +42059 q^{-22} -674 q^{-23} -40432 q^{-24} -41809 q^{-25} -6032 q^{-26} +32659 q^{-27} +40014 q^{-28} +11998 q^{-29} -24126 q^{-30} -36536 q^{-31} -16696 q^{-32} +15479 q^{-33} +31482 q^{-34} +19480 q^{-35} -7415 q^{-36} -25111 q^{-37} -20175 q^{-38} +607 q^{-39} +18265 q^{-40} +18798 q^{-41} +4212 q^{-42} -11549 q^{-43} -15802 q^{-44} -6997 q^{-45} +5868 q^{-46} +11967 q^{-47} +7727 q^{-48} -1657 q^{-49} -7988 q^{-50} -7003 q^{-51} -935 q^{-52} +4579 q^{-53} +5464 q^{-54} +2059 q^{-55} -2081 q^{-56} -3687 q^{-57} -2191 q^{-58} +535 q^{-59} +2177 q^{-60} +1772 q^{-61} +197 q^{-62} -1078 q^{-63} -1206 q^{-64} -412 q^{-65} +429 q^{-66} +691 q^{-67} +384 q^{-68} -103 q^{-69} -366 q^{-70} -251 q^{-71} - q^{-72} +138 q^{-73} +147 q^{-74} +48 q^{-75} -67 q^{-76} -73 q^{-77} -15 q^{-78} +9 q^{-79} +24 q^{-80} +26 q^{-81} -8 q^{-82} -15 q^{-83} - q^{-84} +5 q^{-87} -3 q^{-89} + q^{-90} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{40}-4 q^{39}+4 q^{38}+5 q^{37}-12 q^{36}+5 q^{35}-12 q^{34}+32 q^{33}+22 q^{32}-82 q^{31}-q^{30}-22 q^{29}+169 q^{28}+110 q^{27}-320 q^{26}-143 q^{25}-63 q^{24}+615 q^{23}+473 q^{22}-800 q^{21}-714 q^{20}-375 q^{19}+1520 q^{18}+1528 q^{17}-1280 q^{16}-1950 q^{15}-1425 q^{14}+2619 q^{13}+3491 q^{12}-1172 q^{11}-3513 q^{10}-3439 q^9+3210 q^8+5875 q^7-126 q^6-4591 q^5-5888 q^4+2829 q^3+7705 q^2+1513 q-4619-7858 q^{-1} +1655 q^{-2} +8346 q^{-3} +3084 q^{-4} -3679 q^{-5} -8782 q^{-6} +153 q^{-7} +7773 q^{-8} +4205 q^{-9} -2126 q^{-10} -8618 q^{-11} -1359 q^{-12} +6248 q^{-13} +4757 q^{-14} -281 q^{-15} -7461 q^{-16} -2620 q^{-17} +4048 q^{-18} +4583 q^{-19} +1473 q^{-20} -5449 q^{-21} -3221 q^{-22} +1664 q^{-23} +3546 q^{-24} +2540 q^{-25} -3029 q^{-26} -2834 q^{-27} -158 q^{-28} +1950 q^{-29} +2512 q^{-30} -1016 q^{-31} -1717 q^{-32} -881 q^{-33} +550 q^{-34} +1659 q^{-35} +7 q^{-36} -623 q^{-37} -712 q^{-38} -119 q^{-39} +736 q^{-40} +192 q^{-41} -65 q^{-42} -308 q^{-43} -192 q^{-44} +215 q^{-45} +88 q^{-46} +51 q^{-47} -75 q^{-48} -88 q^{-49} +42 q^{-50} +15 q^{-51} +26 q^{-52} -8 q^{-53} -22 q^{-54} +6 q^{-55} +5 q^{-57} -3 q^{-59} + q^{-60} </math> | |
|||
coloured_jones_5 = <math>q^{60}-4 q^{59}+4 q^{58}+5 q^{57}-12 q^{56}+q^{55}+8 q^{54}+13 q^{52}-q^{51}-53 q^{50}-28 q^{49}+63 q^{48}+98 q^{47}+58 q^{46}-107 q^{45}-268 q^{44}-173 q^{43}+243 q^{42}+628 q^{41}+390 q^{40}-448 q^{39}-1214 q^{38}-955 q^{37}+629 q^{36}+2314 q^{35}+2043 q^{34}-760 q^{33}-3870 q^{32}-3950 q^{31}+379 q^{30}+5989 q^{29}+7057 q^{28}+788 q^{27}-8430 q^{26}-11461 q^{25}-3261 q^{24}+10649 q^{23}+17198 q^{22}+7522 q^{21}-12237 q^{20}-23812 q^{19}-13540 q^{18}+12335 q^{17}+30612 q^{16}+21362 q^{15}-10740 q^{14}-36811 q^{13}-30057 q^{12}+7035 q^{11}+41591 q^{10}+39116 q^9-1816 q^8-44414 q^7-47270 q^6-4751 q^5+45119 q^4+54206 q^3+11476 q^2-43822 q-58974-18273 q^{-1} +40926 q^{-2} +62017 q^{-3} +24100 q^{-4} -36876 q^{-5} -62884 q^{-6} -29276 q^{-7} +31978 q^{-8} +62395 q^{-9} +33340 q^{-10} -26575 q^{-11} -60287 q^{-12} -36755 q^{-13} +20653 q^{-14} +57144 q^{-15} +39304 q^{-16} -14307 q^{-17} -52724 q^{-18} -41185 q^{-19} +7582 q^{-20} +47206 q^{-21} +42059 q^{-22} -674 q^{-23} -40432 q^{-24} -41809 q^{-25} -6032 q^{-26} +32659 q^{-27} +40014 q^{-28} +11998 q^{-29} -24126 q^{-30} -36536 q^{-31} -16696 q^{-32} +15479 q^{-33} +31482 q^{-34} +19480 q^{-35} -7415 q^{-36} -25111 q^{-37} -20175 q^{-38} +607 q^{-39} +18265 q^{-40} +18798 q^{-41} +4212 q^{-42} -11549 q^{-43} -15802 q^{-44} -6997 q^{-45} +5868 q^{-46} +11967 q^{-47} +7727 q^{-48} -1657 q^{-49} -7988 q^{-50} -7003 q^{-51} -935 q^{-52} +4579 q^{-53} +5464 q^{-54} +2059 q^{-55} -2081 q^{-56} -3687 q^{-57} -2191 q^{-58} +535 q^{-59} +2177 q^{-60} +1772 q^{-61} +197 q^{-62} -1078 q^{-63} -1206 q^{-64} -412 q^{-65} +429 q^{-66} +691 q^{-67} +384 q^{-68} -103 q^{-69} -366 q^{-70} -251 q^{-71} - q^{-72} +138 q^{-73} +147 q^{-74} +48 q^{-75} -67 q^{-76} -73 q^{-77} -15 q^{-78} +9 q^{-79} +24 q^{-80} +26 q^{-81} -8 q^{-82} -15 q^{-83} - q^{-84} +5 q^{-87} -3 q^{-89} + q^{-90} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 60]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 60]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], |
X[16, 12, 17, 11], X[14, 7, 15, 8], X[6, 15, 7, 16], |
||
X[20, 18, 1, 17], X[18, 13, 19, 14], X[12, 19, 13, 20]]</nowiki></ |
X[20, 18, 1, 17], X[18, 13, 19, 14], X[12, 19, 13, 20]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 60]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 60]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, |
|||
-9, 10, -8]</nowiki></ |
-9, 10, -8]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 60]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 60]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 60]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 18, 6, 20, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 60]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, 2, 2, -3, 2, -3, -2, -4, 3, -4}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 60]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_60_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 60]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 60]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 60]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 60]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_60_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 60]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 60]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 20 2 3 |
|||
29 - t + -- - -- - 20 t + 7 t - t |
29 - t + -- - -- - 20 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 60]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 60]][z]</nowiki></code></td></tr> |
|||
1 - z + z - z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - z + z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 60]], KnotSignature[Knot[10, 60]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{85, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 6 10 13 14 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 60], Knot[11, NonAlternating, 165]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 60]], KnotSignature[Knot[10, 60]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{85, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 60]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 6 10 13 14 2 3 4 |
|||
14 + q - -- + -- - -- + -- - -- - 11 q + 8 q - 4 q + q |
14 + q - -- + -- - -- + -- - -- - 11 q + 8 q - 4 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 60]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 60], Knot[10, 86]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 60]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 2 3 3 -4 2 2 4 6 |
|||
-2 + q + q - --- - --- + -- + q + -- + 3 q - 3 q + q + |
-2 + q + q - --- - --- + -- + q + -- + 3 q - 3 q + q + |
||
16 10 8 2 |
16 10 8 2 |
||
Line 147: | Line 181: | ||
8 10 12 |
8 10 12 |
||
2 q - 2 q + q</nowiki></ |
2 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 60]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 60]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 4 6 2 z 2 2 4 2 4 |
-2 2 4 6 2 z 2 2 4 2 4 |
||
-2 + a + 4 a - 3 a + a - 5 z + -- + 6 a z - 3 a z - 3 z + |
-2 + a + 4 a - 3 a + a - 5 z + -- + 6 a z - 3 a z - 3 z + |
||
Line 160: | Line 198: | ||
-- + 3 a z - z |
-- + 3 a z - z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 60]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 60]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 4 6 2 z 3 5 2 |
|||
-2 - a - 4 a - 3 a - a - --- - 6 a z - 7 a z - 3 a z + 14 z + |
-2 - a - 4 a - 3 a - a - --- - 6 a z - 7 a z - 3 a z + 14 z + |
||
a |
a |
||
Line 191: | Line 233: | ||
8 2 8 4 8 9 3 9 |
8 2 8 4 8 9 3 9 |
||
5 z + 8 a z + 3 a z + a z + a z</nowiki></ |
5 z + 8 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 60]], Vassiliev[3][Knot[10, 60]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 60]], Vassiliev[3][Knot[10, 60]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 60]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 60]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 2 1 4 2 6 4 |
|||
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 208: | Line 258: | ||
5 3 7 3 9 4 |
5 3 7 3 9 4 |
||
q t + 3 q t + q t</nowiki></ |
q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 60], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 60], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 3 11 15 8 43 34 39 97 42 93 |
|||
143 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
143 + q - --- + --- - --- - --- + --- - --- - --- + -- - -- - -- + |
||
17 15 14 13 12 11 10 9 8 7 |
17 15 14 13 12 11 10 9 8 7 |
||
Line 222: | Line 276: | ||
5 6 7 8 9 10 11 12 |
5 6 7 8 9 10 11 12 |
||
80 q + 39 q + 17 q - 28 q + 9 q + 4 q - 4 q + q</nowiki></ |
80 q + 39 q + 17 q - 28 q + 9 q + 4 q - 4 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 60's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
Gauss code | 1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
Dowker-Thistlethwaite code | 4 8 10 14 2 16 18 6 20 12 |
Conway Notation | [211,211,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{2, 13}, {1, 10}, {12, 6}, {13, 11}, {9, 3}, {10, 8}, {7, 9}, {8, 12}, {5, 2}, {6, 4}, {3, 5}, {4, 7}, {11, 1}] |
[edit Notes on presentations of 10 60]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X16,12,17,11 X14,7,15,8 X6,15,7,16 X20,18,1,17 X18,13,19,14 X12,19,13,20 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -7, 6, -3, 4, -2, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 16 18 6 20 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,211,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 13}, {1, 10}, {12, 6}, {13, 11}, {9, 3}, {10, 8}, {7, 9}, {8, 12}, {5, 2}, {6, 4}, {3, 5}, {4, 7}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 85, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n165,}
Same Jones Polynomial (up to mirroring, ): {10_86,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 60"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n165,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_86,} |
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 60. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|