10 61: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_61}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 61 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-8,6,-7,5,-1,3,-2,4,-10,9,-5,7,-6,8,-4,10,-9/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{22}-2 q^{21}+q^{20}+2 q^{19}-4 q^{18}+3 q^{17}-4 q^{15}+5 q^{14}-q^{13}-5 q^{12}+7 q^{11}-10 q^9+9 q^8+3 q^7-13 q^6+9 q^5+7 q^4-13 q^3+5 q^2+8 q-11+ q^{-1} +7 q^{-2} -6 q^{-3} - q^{-4} +4 q^{-5} - q^{-6} - q^{-7} + q^{-8} </math> | |
|||
coloured_jones_3 = <math>q^{42}-2 q^{41}+q^{40}+2 q^{38}-3 q^{37}-q^{36}+2 q^{35}+3 q^{34}-3 q^{33}-5 q^{32}+5 q^{31}+8 q^{30}-8 q^{29}-13 q^{28}+10 q^{27}+20 q^{26}-11 q^{25}-25 q^{24}+10 q^{23}+29 q^{22}-7 q^{21}-29 q^{20}+3 q^{19}+25 q^{18}+q^{17}-21 q^{16}-2 q^{15}+14 q^{14}+4 q^{13}-10 q^{12}-3 q^{11}+5 q^{10}+4 q^9-3 q^8-3 q^7-q^6+q^5+5 q^4-5 q^2-5 q+9+7 q^{-1} -4 q^{-2} -13 q^{-3} +5 q^{-4} +10 q^{-5} +3 q^{-6} -13 q^{-7} -3 q^{-8} +6 q^{-9} +7 q^{-10} -5 q^{-11} -4 q^{-12} +4 q^{-14} - q^{-16} - q^{-17} + q^{-18} </math> | |
|||
coloured_jones_4 = <math>q^{68}-2 q^{67}+q^{66}+3 q^{63}-7 q^{62}+4 q^{61}+q^{59}+3 q^{58}-12 q^{57}+12 q^{56}-2 q^{55}-4 q^{54}-q^{53}-9 q^{52}+30 q^{51}-4 q^{50}-20 q^{49}-18 q^{48}-2 q^{47}+66 q^{46}+3 q^{45}-47 q^{44}-52 q^{43}-3 q^{42}+110 q^{41}+29 q^{40}-58 q^{39}-90 q^{38}-31 q^{37}+129 q^{36}+61 q^{35}-36 q^{34}-98 q^{33}-66 q^{32}+107 q^{31}+68 q^{30}-5 q^{29}-70 q^{28}-79 q^{27}+74 q^{26}+52 q^{25}+9 q^{24}-36 q^{23}-77 q^{22}+50 q^{21}+38 q^{20}+16 q^{19}-14 q^{18}-77 q^{17}+28 q^{16}+30 q^{15}+26 q^{14}+10 q^{13}-73 q^{12}+2 q^{11}+13 q^{10}+31 q^9+39 q^8-56 q^7-13 q^6-13 q^5+14 q^4+53 q^3-24 q^2-4 q-26-16 q^{-1} +39 q^{-2} -4 q^{-3} +19 q^{-4} -10 q^{-5} -29 q^{-6} +10 q^{-7} -11 q^{-8} +26 q^{-9} +13 q^{-10} -13 q^{-11} -2 q^{-12} -25 q^{-13} +9 q^{-14} +15 q^{-15} +5 q^{-16} +7 q^{-17} -20 q^{-18} -5 q^{-19} +2 q^{-20} +5 q^{-21} +11 q^{-22} -6 q^{-23} -3 q^{-24} -3 q^{-25} - q^{-26} +5 q^{-27} - q^{-30} - q^{-31} + q^{-32} </math> | |
|||
coloured_jones_5 = <math>q^{100}-2 q^{99}+q^{98}+q^{95}-q^{94}-2 q^{93}+2 q^{92}+q^{91}-2 q^{90}+2 q^{89}+q^{88}-3 q^{87}-3 q^{85}-3 q^{84}+11 q^{83}+13 q^{82}-6 q^{81}-21 q^{80}-19 q^{79}+7 q^{78}+42 q^{77}+36 q^{76}-21 q^{75}-73 q^{74}-52 q^{73}+36 q^{72}+112 q^{71}+80 q^{70}-52 q^{69}-165 q^{68}-119 q^{67}+66 q^{66}+222 q^{65}+173 q^{64}-67 q^{63}-277 q^{62}-241 q^{61}+45 q^{60}+325 q^{59}+309 q^{58}-6 q^{57}-339 q^{56}-369 q^{55}-48 q^{54}+324 q^{53}+401 q^{52}+105 q^{51}-286 q^{50}-400 q^{49}-142 q^{48}+228 q^{47}+368 q^{46}+166 q^{45}-177 q^{44}-326 q^{43}-160 q^{42}+138 q^{41}+278 q^{40}+148 q^{39}-111 q^{38}-244 q^{37}-136 q^{36}+94 q^{35}+223 q^{34}+129 q^{33}-78 q^{32}-201 q^{31}-138 q^{30}+49 q^{29}+191 q^{28}+144 q^{27}-17 q^{26}-158 q^{25}-158 q^{24}-26 q^{23}+125 q^{22}+156 q^{21}+66 q^{20}-75 q^{19}-142 q^{18}-100 q^{17}+22 q^{16}+113 q^{15}+116 q^{14}+29 q^{13}-68 q^{12}-113 q^{11}-72 q^{10}+17 q^9+91 q^8+94 q^7+32 q^6-48 q^5-95 q^4-69 q^3+5 q^2+69 q+83+42 q^{-1} -33 q^{-2} -74 q^{-3} -63 q^{-4} -13 q^{-5} +42 q^{-6} +71 q^{-7} +40 q^{-8} -10 q^{-9} -42 q^{-10} -52 q^{-11} -30 q^{-12} +19 q^{-13} +41 q^{-14} +33 q^{-15} +19 q^{-16} -12 q^{-17} -39 q^{-18} -28 q^{-19} -6 q^{-20} +9 q^{-21} +30 q^{-22} +27 q^{-23} +3 q^{-24} -14 q^{-25} -21 q^{-26} -22 q^{-27} +15 q^{-29} +17 q^{-30} +12 q^{-31} -16 q^{-33} -11 q^{-34} -4 q^{-35} +2 q^{-36} +9 q^{-37} +9 q^{-38} -2 q^{-39} -3 q^{-40} -3 q^{-41} -4 q^{-42} +4 q^{-44} + q^{-45} - q^{-48} - q^{-49} + q^{-50} </math> | |
|||
coloured_jones_6 = <math>q^{138}-2 q^{137}+q^{136}+q^{133}-3 q^{132}+4 q^{131}-4 q^{130}+3 q^{129}-2 q^{128}+6 q^{126}-8 q^{125}+5 q^{124}-8 q^{123}+5 q^{122}-2 q^{121}+7 q^{120}+16 q^{119}-22 q^{118}-6 q^{117}-14 q^{116}+15 q^{115}+11 q^{114}+25 q^{113}+17 q^{112}-64 q^{111}-35 q^{110}-5 q^{109}+64 q^{108}+55 q^{107}+35 q^{106}-31 q^{105}-165 q^{104}-76 q^{103}+60 q^{102}+197 q^{101}+151 q^{100}+10 q^{99}-178 q^{98}-368 q^{97}-143 q^{96}+203 q^{95}+463 q^{94}+355 q^{93}-9 q^{92}-428 q^{91}-728 q^{90}-331 q^{89}+330 q^{88}+840 q^{87}+739 q^{86}+135 q^{85}-629 q^{84}-1192 q^{83}-730 q^{82}+232 q^{81}+1114 q^{80}+1205 q^{79}+526 q^{78}-537 q^{77}-1478 q^{76}-1176 q^{75}-139 q^{74}+1024 q^{73}+1417 q^{72}+922 q^{71}-169 q^{70}-1348 q^{69}-1309 q^{68}-475 q^{67}+672 q^{66}+1211 q^{65}+990 q^{64}+126 q^{63}-996 q^{62}-1084 q^{61}-516 q^{60}+420 q^{59}+881 q^{58}+801 q^{57}+171 q^{56}-769 q^{55}-841 q^{54}-417 q^{53}+355 q^{52}+718 q^{51}+681 q^{50}+170 q^{49}-677 q^{48}-773 q^{47}-444 q^{46}+266 q^{45}+649 q^{44}+716 q^{43}+307 q^{42}-516 q^{41}-740 q^{40}-589 q^{39}+32 q^{38}+483 q^{37}+740 q^{36}+520 q^{35}-220 q^{34}-578 q^{33}-681 q^{32}-258 q^{31}+184 q^{30}+612 q^{29}+653 q^{28}+119 q^{27}-268 q^{26}-601 q^{25}-455 q^{24}-162 q^{23}+315 q^{22}+594 q^{21}+363 q^{20}+100 q^{19}-328 q^{18}-438 q^{17}-406 q^{16}-59 q^{15}+318 q^{14}+373 q^{13}+355 q^{12}+33 q^{11}-180 q^{10}-389 q^9-311 q^8-45 q^7+126 q^6+326 q^5+247 q^4+151 q^3-111 q^2-260 q-231-167 q^{-1} +57 q^{-2} +150 q^{-3} +265 q^{-4} +165 q^{-5} +3 q^{-6} -104 q^{-7} -216 q^{-8} -153 q^{-9} -104 q^{-10} +87 q^{-11} +169 q^{-12} +150 q^{-13} +115 q^{-14} -25 q^{-15} -87 q^{-16} -184 q^{-17} -102 q^{-18} -16 q^{-19} +43 q^{-20} +129 q^{-21} +102 q^{-22} +83 q^{-23} -48 q^{-24} -68 q^{-25} -84 q^{-26} -89 q^{-27} -8 q^{-28} +29 q^{-29} +95 q^{-30} +44 q^{-31} +47 q^{-32} +4 q^{-33} -56 q^{-34} -52 q^{-35} -53 q^{-36} +4 q^{-37} -5 q^{-38} +48 q^{-39} +49 q^{-40} +19 q^{-41} +2 q^{-42} -26 q^{-43} -17 q^{-44} -45 q^{-45} -4 q^{-46} +12 q^{-47} +18 q^{-48} +20 q^{-49} +11 q^{-50} +11 q^{-51} -23 q^{-52} -11 q^{-53} -9 q^{-54} -3 q^{-55} +2 q^{-56} +7 q^{-57} +14 q^{-58} -3 q^{-59} -3 q^{-61} -3 q^{-62} -4 q^{-63} - q^{-64} +5 q^{-65} + q^{-67} - q^{-70} - q^{-71} + q^{-72} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 61]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11], |
|||
X[14, 7, 15, 8], X[16, 5, 17, 6], X[6, 15, 7, 16], X[4, 17, 5, 18], |
|||
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 61]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, |
|||
-4, 10, -9]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 61]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[8, 10, 16, 14, 2, 18, 20, 6, 4, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 61]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 1, -2, -3, 2, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 61]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 61]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_61_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 61]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 61]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 5 6 2 3 |
|||
7 - -- + -- - - - 6 t + 5 t - 2 t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 61]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 4 z - 7 z - 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 61]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 61]], KnotSignature[Knot[10, 61]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{33, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 61]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 1 2 3 4 5 6 7 8 |
|||
3 + q - - - 4 q + 4 q - 5 q + 5 q - 4 q + 3 q - 2 q + q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 61]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 61]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 2 4 6 8 14 24 |
|||
2 + q + q + -- - q - 3 q - 2 q + 2 q + q |
|||
2 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 61]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 |
|||
-6 -4 5 2 3 z 3 z 8 z 4 z 4 z |
|||
4 + a + a - -- + 4 z + ---- - ---- - ---- + z + -- - ---- - |
|||
2 6 4 2 6 4 |
|||
a a a a a a |
|||
4 6 6 |
|||
5 z z z |
|||
---- - -- - -- |
|||
2 4 2 |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 61]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
-6 -4 5 6 z 8 z 2 z 2 z 2 z 6 z z |
|||
4 - a + a + -- - --- - --- - --- - 16 z + --- - ---- + ---- + -- - |
|||
2 5 3 a 10 8 6 4 |
|||
a a a a a a a |
|||
2 3 3 3 3 3 4 4 |
|||
24 z 2 z 6 z 17 z 26 z z 4 3 z 13 z |
|||
----- + ---- - ---- + ----- + ----- + -- + 17 z + ---- - ----- + |
|||
2 9 7 5 3 a 8 6 |
|||
a a a a a a a |
|||
4 4 5 5 5 5 6 6 |
|||
5 z 38 z 4 z 18 z 16 z 6 z 6 5 z 10 z |
|||
---- + ----- + ---- - ----- - ----- + ---- - 7 z + ---- - ----- - |
|||
4 2 7 5 3 a 6 4 |
|||
a a a a a a a |
|||
6 7 7 8 8 9 9 |
|||
22 z 5 z 5 z 8 3 z 4 z z z |
|||
----- + ---- - ---- + z + ---- + ---- + -- + -- |
|||
2 5 a 4 2 3 a |
|||
a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 61]], Vassiliev[3][Knot[10, 61]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-4, -5}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 61]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 1 3 q 3 q 5 7 |
|||
3 q + 2 q + ----- + ---- + ---- + - + ---- + 3 q t + 2 q t + |
|||
5 4 3 2 t t |
|||
q t q t q t |
|||
7 2 9 2 9 3 11 3 11 4 13 4 13 5 |
|||
2 q t + 3 q t + 2 q t + 2 q t + q t + 2 q t + q t + |
|||
15 5 17 6 |
|||
q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 61], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 -7 -6 4 -4 6 7 1 2 3 |
|||
-11 + q - q - q + -- - q - -- + -- + - + 8 q + 5 q - 13 q + |
|||
5 3 2 q |
|||
q q q |
|||
4 5 6 7 8 9 11 12 13 |
|||
7 q + 9 q - 13 q + 3 q + 9 q - 10 q + 7 q - 5 q - q + |
|||
14 15 17 18 19 20 21 22 |
|||
5 q - 4 q + 3 q - 4 q + 2 q + q - 2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 61's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_61 is also known as the pretzel knot P(4,3,3). |
Knot presentations
Planar diagram presentation | X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X20,14,1,13 X12,20,13,19 |
Gauss code | 1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, -4, 10, -9 |
Dowker-Thistlethwaite code | 8 10 16 14 2 18 20 6 4 12 |
Conway Notation | [4,3,3] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{6, 13}, {1, 12}, {13, 11}, {12, 4}, {10, 3}, {11, 9}, {8, 10}, {9, 7}, {5, 8}, {4, 2}, {3, 6}, {2, 5}, {7, 1}] |
[edit Notes on presentations of 10 61]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 61"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,7,15,8 X16,5,17,6 X6,15,7,16 X4,17,5,18 X20,14,1,13 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -3, 2, -8, 6, -7, 5, -1, 3, -2, 4, -10, 9, -5, 7, -6, 8, -4, 10, -9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
8 10 16 14 2 18 20 6 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[4,3,3] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{6, 13}, {1, 12}, {13, 11}, {12, 4}, {10, 3}, {11, 9}, {8, 10}, {9, 7}, {5, 8}, {4, 2}, {3, 6}, {2, 5}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 61"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 61"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-4, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 61. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|