10 69: Difference between revisions
DrorsRobot (talk | contribs) No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->  | 
||
<!--   | 
  <!--  -->  | 
||
<!--   | 
  <!--  -->  | 
||
{{Rolfsen Knot Page|  | 
  {{Rolfsen Knot Page|  | 
||
n = 10 |  | 
  n = 10 |  | 
||
| Line 47: | Line 47: | ||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-2 q^{108}-4 q^{107}+6 q^{106}+2 q^{105}-4 q^{104}+5 q^{103}-11 q^{102}-22 q^{101}+23 q^{100}+43 q^{99}+11 q^{98}-14 q^{97}-91 q^{96}-111 q^{95}+43 q^{94}+237 q^{93}+240 q^{92}-4 q^{91}-416 q^{90}-629 q^{89}-173 q^{88}+712 q^{87}+1263 q^{86}+709 q^{85}-927 q^{84}-2331 q^{83}-1819 q^{82}+831 q^{81}+3682 q^{80}+3875 q^{79}+33 q^{78}-5244 q^{77}-6859 q^{76}-2134 q^{75}+6237 q^{74}+10922 q^{73}+5989 q^{72}-6302 q^{71}-15435 q^{70}-11638 q^{69}+4407 q^{68}+19803 q^{67}+19118 q^{66}-339 q^{65}-23159 q^{64}-27634 q^{63}-6160 q^{62}+24674 q^{61}+36446 q^{60}+14800 q^{59}-24044 q^{58}-44606 q^{57}-24687 q^{56}+21041 q^{55}+51260 q^{54}+35214 q^{53}-16172 q^{52}-56120 q^{51}-45110 q^{50}+9830 q^{49}+58825 q^{48}+54146 q^{47}-2934 q^{46}-59730 q^{45}-61387 q^{44}-4259 q^{43}+58882 q^{42}+67230 q^{41}+11026 q^{40}-56786 q^{39}-71073 q^{38}-17556 q^{37}+53330 q^{36}+73624 q^{35}+23481 q^{34}-48866 q^{33}-74269 q^{32}-29103 q^{31}+43038 q^{30}+73458 q^{29}+34167 q^{28}-36114 q^{27}-70632 q^{26}-38518 q^{25}+27940 q^{24}+65885 q^{23}+41739 q^{22}-19019 q^{21}-59028 q^{20}-43384 q^{19}+9905 q^{18}+50365 q^{17}+42957 q^{16}-1405 q^{15}-40314 q^{14}-40415 q^{13}-5663 q^{12}+29961 q^{11}+35679 q^{10}+10586 q^9-19945 q^8-29561 q^7-13195 q^6+11564 q^5+22657 q^4+13425 q^3-4986 q^2-16044 q-12053+810 q^{-1} +10277 q^{-2} +9605 q^{-3} +1561 q^{-4} -5948 q^{-5} -6966 q^{-6} -2282 q^{-7} +2915 q^{-8} +4554 q^{-9} +2265 q^{-10} -1209 q^{-11} -2741 q^{-12} -1681 q^{-13} +277 q^{-14} +1451 q^{-15} +1186 q^{-16} +55 q^{-17} -742 q^{-18} -672 q^{-19} -134 q^{-20} +300 q^{-21} +370 q^{-22} +133 q^{-23} -133 q^{-24} -185 q^{-25} -66 q^{-26} +48 q^{-27} +64 q^{-28} +46 q^{-29} -5 q^{-30} -45 q^{-31} -13 q^{-32} +11 q^{-33} +5 q^{-34} +4 q^{-35} +5 q^{-36} -8 q^{-37} -2 q^{-38} +4 q^{-39} - q^{-40} </math> |  | 
  coloured_jones_5 = <math>-q^{110}+3 q^{109}-2 q^{108}-4 q^{107}+6 q^{106}+2 q^{105}-4 q^{104}+5 q^{103}-11 q^{102}-22 q^{101}+23 q^{100}+43 q^{99}+11 q^{98}-14 q^{97}-91 q^{96}-111 q^{95}+43 q^{94}+237 q^{93}+240 q^{92}-4 q^{91}-416 q^{90}-629 q^{89}-173 q^{88}+712 q^{87}+1263 q^{86}+709 q^{85}-927 q^{84}-2331 q^{83}-1819 q^{82}+831 q^{81}+3682 q^{80}+3875 q^{79}+33 q^{78}-5244 q^{77}-6859 q^{76}-2134 q^{75}+6237 q^{74}+10922 q^{73}+5989 q^{72}-6302 q^{71}-15435 q^{70}-11638 q^{69}+4407 q^{68}+19803 q^{67}+19118 q^{66}-339 q^{65}-23159 q^{64}-27634 q^{63}-6160 q^{62}+24674 q^{61}+36446 q^{60}+14800 q^{59}-24044 q^{58}-44606 q^{57}-24687 q^{56}+21041 q^{55}+51260 q^{54}+35214 q^{53}-16172 q^{52}-56120 q^{51}-45110 q^{50}+9830 q^{49}+58825 q^{48}+54146 q^{47}-2934 q^{46}-59730 q^{45}-61387 q^{44}-4259 q^{43}+58882 q^{42}+67230 q^{41}+11026 q^{40}-56786 q^{39}-71073 q^{38}-17556 q^{37}+53330 q^{36}+73624 q^{35}+23481 q^{34}-48866 q^{33}-74269 q^{32}-29103 q^{31}+43038 q^{30}+73458 q^{29}+34167 q^{28}-36114 q^{27}-70632 q^{26}-38518 q^{25}+27940 q^{24}+65885 q^{23}+41739 q^{22}-19019 q^{21}-59028 q^{20}-43384 q^{19}+9905 q^{18}+50365 q^{17}+42957 q^{16}-1405 q^{15}-40314 q^{14}-40415 q^{13}-5663 q^{12}+29961 q^{11}+35679 q^{10}+10586 q^9-19945 q^8-29561 q^7-13195 q^6+11564 q^5+22657 q^4+13425 q^3-4986 q^2-16044 q-12053+810 q^{-1} +10277 q^{-2} +9605 q^{-3} +1561 q^{-4} -5948 q^{-5} -6966 q^{-6} -2282 q^{-7} +2915 q^{-8} +4554 q^{-9} +2265 q^{-10} -1209 q^{-11} -2741 q^{-12} -1681 q^{-13} +277 q^{-14} +1451 q^{-15} +1186 q^{-16} +55 q^{-17} -742 q^{-18} -672 q^{-19} -134 q^{-20} +300 q^{-21} +370 q^{-22} +133 q^{-23} -133 q^{-24} -185 q^{-25} -66 q^{-26} +48 q^{-27} +64 q^{-28} +46 q^{-29} -5 q^{-30} -45 q^{-31} -13 q^{-32} +11 q^{-33} +5 q^{-34} +4 q^{-35} +5 q^{-36} -8 q^{-37} -2 q^{-38} +4 q^{-39} - q^{-40} </math> |  | 
||
coloured_jones_6 = <math>q^{153}-3 q^{152}+2 q^{151}+4 q^{150}-6 q^{149}-2 q^{148}-q^{147}+15 q^{146}-10 q^{145}-q^{144}+28 q^{143}-37 q^{142}-30 q^{141}-13 q^{140}+77 q^{139}+25 q^{138}+16 q^{137}+95 q^{136}-172 q^{135}-228 q^{134}-159 q^{133}+263 q^{132}+308 q^{131}+360 q^{130}+480 q^{129}-561 q^{128}-1153 q^{127}-1254 q^{126}+185 q^{125}+1187 q^{124}+2222 q^{123}+2830 q^{122}-345 q^{121}-3582 q^{120}-5840 q^{119}-3119 q^{118}+999 q^{117}+7049 q^{116}+11702 q^{115}+5902 q^{114}-4632 q^{113}-16430 q^{112}-17035 q^{111}-9338 q^{110}+9969 q^{109}+30667 q^{108}+29753 q^{107}+9643 q^{106}-25339 q^{105}-46128 q^{104}-46371 q^{103}-9077 q^{102}+48021 q^{101}+76748 q^{100}+61052 q^{99}-5489 q^{98}-73901 q^{97}-115855 q^{96}-76895 q^{95}+29385 q^{94}+125127 q^{93}+154418 q^{92}+73981 q^{91}-59584 q^{90}-190230 q^{89}-196007 q^{88}-58377 q^{87}+128868 q^{86}+256318 q^{85}+212139 q^{84}+29782 q^{83}-219573 q^{82}-327261 q^{81}-209585 q^{80}+56438 q^{79}+314426 q^{78}+365081 q^{77}+183183 q^{76}-174563 q^{75}-417104 q^{74}-376572 q^{73}-77438 q^{72}+301775 q^{71}+479632 q^{70}+351254 q^{69}-71583 q^{68}-440451 q^{67}-507943 q^{66}-225474 q^{65}+234221 q^{64}+532645 q^{63}+486687 q^{62}+47351 q^{61}-410722 q^{60}-582966 q^{59}-347730 q^{58}+146413 q^{57}+534670 q^{56}+572713 q^{55}+151582 q^{54}-354261 q^{53}-609988 q^{52}-433462 q^{51}+59356 q^{50}+504456 q^{49}+616966 q^{48}+236940 q^{47}-282948 q^{46}-601618 q^{45}-491012 q^{44}-28635 q^{43}+446200 q^{42}+627244 q^{41}+312203 q^{40}-190207 q^{39}-555571 q^{38}-523805 q^{37}-125675 q^{36}+349536 q^{35}+595214 q^{34}+375256 q^{33}-69685 q^{32}-458164 q^{31}-516598 q^{30}-222600 q^{29}+210606 q^{28}+503619 q^{27}+402191 q^{26}+61232 q^{25}-308130 q^{24}-447067 q^{23}-285746 q^{22}+54973 q^{21}+353221 q^{20}+364485 q^{19}+159174 q^{18}-138309 q^{17}-316308 q^{16}-280859 q^{15}-66294 q^{14}+182376 q^{13}+263001 q^{12}+185928 q^{11}-4633 q^{10}-165324 q^9-209517 q^8-114346 q^7+48543 q^6+139926 q^5+145060 q^4+56360 q^3-49406 q^2-114531 q-96180-16455 q^{-1} +46574 q^{-2} +79144 q^{-3} +55332 q^{-4} +5971 q^{-5} -42476 q^{-6} -53117 q^{-7} -26252 q^{-8} +2555 q^{-9} +29120 q^{-10} +30777 q^{-11} +16168 q^{-12} -8288 q^{-13} -19992 q^{-14} -15023 q^{-15} -7012 q^{-16} +6080 q^{-17} +11202 q^{-18} +9900 q^{-19} +788 q^{-20} -4943 q^{-21} -5119 q^{-22} -4545 q^{-23} -53 q^{-24} +2616 q^{-25} +3823 q^{-26} +1091 q^{-27} -702 q^{-28} -1015 q^{-29} -1647 q^{-30} -516 q^{-31} +305 q^{-32} +1102 q^{-33} +354 q^{-34} -35 q^{-35} -55 q^{-36} -407 q^{-37} -197 q^{-38} -30 q^{-39} +268 q^{-40} +56 q^{-41} -3 q^{-42} +32 q^{-43} -74 q^{-44} -40 q^{-45} -25 q^{-46} +59 q^{-47} +4 q^{-48} -10 q^{-49} +13 q^{-50} -10 q^{-51} -4 q^{-52} -5 q^{-53} +8 q^{-54} +2 q^{-55} -4 q^{-56} + q^{-57} </math> |  | 
  coloured_jones_6 = <math>q^{153}-3 q^{152}+2 q^{151}+4 q^{150}-6 q^{149}-2 q^{148}-q^{147}+15 q^{146}-10 q^{145}-q^{144}+28 q^{143}-37 q^{142}-30 q^{141}-13 q^{140}+77 q^{139}+25 q^{138}+16 q^{137}+95 q^{136}-172 q^{135}-228 q^{134}-159 q^{133}+263 q^{132}+308 q^{131}+360 q^{130}+480 q^{129}-561 q^{128}-1153 q^{127}-1254 q^{126}+185 q^{125}+1187 q^{124}+2222 q^{123}+2830 q^{122}-345 q^{121}-3582 q^{120}-5840 q^{119}-3119 q^{118}+999 q^{117}+7049 q^{116}+11702 q^{115}+5902 q^{114}-4632 q^{113}-16430 q^{112}-17035 q^{111}-9338 q^{110}+9969 q^{109}+30667 q^{108}+29753 q^{107}+9643 q^{106}-25339 q^{105}-46128 q^{104}-46371 q^{103}-9077 q^{102}+48021 q^{101}+76748 q^{100}+61052 q^{99}-5489 q^{98}-73901 q^{97}-115855 q^{96}-76895 q^{95}+29385 q^{94}+125127 q^{93}+154418 q^{92}+73981 q^{91}-59584 q^{90}-190230 q^{89}-196007 q^{88}-58377 q^{87}+128868 q^{86}+256318 q^{85}+212139 q^{84}+29782 q^{83}-219573 q^{82}-327261 q^{81}-209585 q^{80}+56438 q^{79}+314426 q^{78}+365081 q^{77}+183183 q^{76}-174563 q^{75}-417104 q^{74}-376572 q^{73}-77438 q^{72}+301775 q^{71}+479632 q^{70}+351254 q^{69}-71583 q^{68}-440451 q^{67}-507943 q^{66}-225474 q^{65}+234221 q^{64}+532645 q^{63}+486687 q^{62}+47351 q^{61}-410722 q^{60}-582966 q^{59}-347730 q^{58}+146413 q^{57}+534670 q^{56}+572713 q^{55}+151582 q^{54}-354261 q^{53}-609988 q^{52}-433462 q^{51}+59356 q^{50}+504456 q^{49}+616966 q^{48}+236940 q^{47}-282948 q^{46}-601618 q^{45}-491012 q^{44}-28635 q^{43}+446200 q^{42}+627244 q^{41}+312203 q^{40}-190207 q^{39}-555571 q^{38}-523805 q^{37}-125675 q^{36}+349536 q^{35}+595214 q^{34}+375256 q^{33}-69685 q^{32}-458164 q^{31}-516598 q^{30}-222600 q^{29}+210606 q^{28}+503619 q^{27}+402191 q^{26}+61232 q^{25}-308130 q^{24}-447067 q^{23}-285746 q^{22}+54973 q^{21}+353221 q^{20}+364485 q^{19}+159174 q^{18}-138309 q^{17}-316308 q^{16}-280859 q^{15}-66294 q^{14}+182376 q^{13}+263001 q^{12}+185928 q^{11}-4633 q^{10}-165324 q^9-209517 q^8-114346 q^7+48543 q^6+139926 q^5+145060 q^4+56360 q^3-49406 q^2-114531 q-96180-16455 q^{-1} +46574 q^{-2} +79144 q^{-3} +55332 q^{-4} +5971 q^{-5} -42476 q^{-6} -53117 q^{-7} -26252 q^{-8} +2555 q^{-9} +29120 q^{-10} +30777 q^{-11} +16168 q^{-12} -8288 q^{-13} -19992 q^{-14} -15023 q^{-15} -7012 q^{-16} +6080 q^{-17} +11202 q^{-18} +9900 q^{-19} +788 q^{-20} -4943 q^{-21} -5119 q^{-22} -4545 q^{-23} -53 q^{-24} +2616 q^{-25} +3823 q^{-26} +1091 q^{-27} -702 q^{-28} -1015 q^{-29} -1647 q^{-30} -516 q^{-31} +305 q^{-32} +1102 q^{-33} +354 q^{-34} -35 q^{-35} -55 q^{-36} -407 q^{-37} -197 q^{-38} -30 q^{-39} +268 q^{-40} +56 q^{-41} -3 q^{-42} +32 q^{-43} -74 q^{-44} -40 q^{-45} -25 q^{-46} +59 q^{-47} +4 q^{-48} -10 q^{-49} +13 q^{-50} -10 q^{-51} -4 q^{-52} -5 q^{-53} +8 q^{-54} +2 q^{-55} -4 q^{-56} + q^{-57} </math> |  | 
||
coloured_jones_7 =   | 
  coloured_jones_7 =  |  | 
||
computer_talk =   | 
  computer_talk =   | 
||
         <table>  | 
           <table>  | 
||
| Line 54: | Line 54: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:  | 
           <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>  | 
||
         </table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 69]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 69]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],   | 
|||
  X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],   | 
    X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6],   | 
||
  X[17, 20, 18, 1], X[9, 19, 10, 18], X[19, 9, 20, 8]]</nowiki></  | 
    X[17, 20, 18, 1], X[9, 19, 10, 18], X[19, 9, 20, 8]]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 69]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8,   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 69]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8,   | 
|||
  9, -10, 8]</nowiki></  | 
    9, -10, 8]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 69]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 12, 18, 2, 16, 6, 20, 8]</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 69]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 12, 18, 2, 16, 6, 20, 8]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[10, 69]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:10_69_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[8]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 69]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 69]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 69]]]</nowiki></code></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:10_69_ML.gif]]</td></tr><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 69]]&) /@ {  | 
|||
                   SymmetryType, UnknottingNumber, ThreeGenus,  | 
                     SymmetryType, UnknottingNumber, ThreeGenus,  | 
||
                   BridgeIndex, SuperBridgeIndex, NakanishiIndex  | 
                     BridgeIndex, SuperBridgeIndex, NakanishiIndex  | 
||
                  }</nowiki></  | 
                    }</nowiki></code></td></tr>  | 
||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 69]][t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       -3   7    21             2    3  | 
|||
-29 + t   - -- + -- + 21 t - 7 t  + t  | 
  -29 + t   - -- + -- + 21 t - 7 t  + t  | 
||
             2   t  | 
               2   t  | 
||
            t</nowiki></  | 
              t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 69]][z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2    4    6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
|||
1 + 2 z  - z  + z</nowiki></pre></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 69]][z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 69]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       2    4    6  | 
|||
1 + 2 z  - z  + z</nowiki></code></td></tr>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 69]][q]</nowiki></pre></td></tr>  | 
  |||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2   4              2       3       4       5      6      7    8  | 
  |||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 69]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 69]], KnotSignature[Knot[10, 69]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{87, 2}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 69]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -2   4              2       3       4       5      6      7    8  | 
|||
-7 - q   + - + 11 q - 14 q  + 15 q  - 13 q  + 11 q  - 7 q  + 3 q  - q  | 
  -7 - q   + - + 11 q - 14 q  + 15 q  - 13 q  + 11 q  - 7 q  + 3 q  - q  | 
||
           q</nowiki></  | 
             q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 69]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 69]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 69]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>  -6   2     -2      2      4      6    8      12      14      16  | 
|||
-q   + -- - q   + 4 q  - 3 q  + 2 q  - q  + 2 q   - 2 q   + 3 q   -   | 
  -q   + -- - q   + 4 q  - 3 q  + 2 q  - q  + 2 q   - 2 q   + 3 q   -   | 
||
        4  | 
          4  | 
||
| Line 104: | Line 180: | ||
   18    20      22    24    26  | 
     18    20      22    24    26  | 
||
  q   - q   + 2 q   - q   - q</nowiki></  | 
    q   - q   + 2 q   - q   - q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 69]][a, z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                              2      2      2           4      4    6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 69]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                              2      2      2           4      4    6  | 
|||
  -8   2    2    2     2   3 z    5 z    5 z     4   3 z    3 z    z  | 
    -8   2    2    2     2   3 z    5 z    5 z     4   3 z    3 z    z  | 
||
-a   + -- - -- + -- - z  + ---- - ---- + ---- - z  - ---- + ---- + --  | 
  -a   + -- - -- + -- - z  + ---- - ---- + ---- - z  - ---- + ---- + --  | 
||
        6    4    2          6      4      2           4      2     2  | 
          6    4    2          6      4      2           4      2     2  | 
||
       a    a    a          a      a      a           a      a     a</nowiki></  | 
         a    a    a          a      a      a           a      a     a</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 69]][a, z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                           2      2  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 69]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                                           2      2  | 
|||
  -8   2    2    2    z    2 z   6 z   4 z   z      2   3 z    7 z  | 
    -8   2    2    2    z    2 z   6 z   4 z   z      2   3 z    7 z  | 
||
-a   - -- - -- - -- + -- - --- - --- - --- - - + 3 z  + ---- + ---- +   | 
  -a   - -- - -- - -- + -- - --- - --- - --- - - + 3 z  + ---- + ---- +   | 
||
| Line 140: | Line 226: | ||
  ---- + ---- + ---- + -- + --  | 
    ---- + ---- + ---- + -- + --  | 
||
    6      4      2     5    3  | 
      6      4      2     5    3  | 
||
   a      a      a     a    a</nowiki></  | 
     a      a      a     a    a</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 69]], Vassiliev[3][Knot[10, 69]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 4}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 69]], Vassiliev[3][Knot[10, 69]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 4}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 69]][q, t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>         3     1       3      1      4    3 q      3        5  | 
|||
7 q + 5 q  + ----- + ----- + ---- + --- + --- + 8 q  t + 6 q  t +   | 
  7 q + 5 q  + ----- + ----- + ---- + --- + --- + 8 q  t + 6 q  t +   | 
||
              5  3    3  2      2   q t    t  | 
                5  3    3  2      2   q t    t  | 
||
| Line 153: | Line 249: | ||
     11  5      13  5    13  6      15  6    17  7  | 
       11  5      13  5    13  6      15  6    17  7  | 
||
  2 q   t  + 5 q   t  + q   t  + 2 q   t  + q   t</nowiki></  | 
    2 q   t  + 5 q   t  + q   t  + 2 q   t  + q   t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 69], 2][q]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -7   4    2    13   24   51               2       3       4  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 69], 2][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       -7   4    2    13   24   51               2       3       4  | 
|||
-61 + q   - -- + -- + -- - -- + -- - 19 q + 117 q  - 95 q  - 59 q  +   | 
  -61 + q   - -- + -- + -- - -- + -- - 19 q + 117 q  - 95 q  - 59 q  +   | 
||
             6    5    4    3   q  | 
               6    5    4    3   q  | 
||
| Line 167: | Line 268: | ||
      19      20      21      22    23  | 
        19      20      21      22    23  | 
||
  21 q   + 9 q   + 2 q   - 3 q   + q</nowiki></  | 
    21 q   + 9 q   + 2 q   - 3 q   + q</nowiki></code></td></tr>  | 
||
</table>  }}  | 
|||
Latest revision as of 16:59, 1 September 2005
| 
 | 
 | 
![]() (KnotPlot image)  | 
 See the full Rolfsen Knot Table. Visit 10 69's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)  | 
Knot presentations
| Planar diagram presentation | X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X17,20,18,1 X9,19,10,18 X19,9,20,8 | 
| Gauss code | -1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, 9, -10, 8 | 
| Dowker-Thistlethwaite code | 4 10 14 12 18 2 16 6 20 8 | 
| Conway Notation | [211,21,21] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5  | 
 
 | 
![]() [{15, 3}, {4, 2}, {3, 7}, {1, 4}, {6, 13}, {8, 10}, {7, 9}, {5, 8}, {2, 6}, {14, 11}, {10, 12}, {9, 5}, {11, 1}, {13, 15}, {12, 14}]  | 
[edit Notes on presentations of 10 69]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["10 69"];
 | 
In[4]:=
 | 
PD[K]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X17,20,18,1 X9,19,10,18 X19,9,20,8 | 
In[5]:=
 | 
GaussCode[K]
 | 
Out[5]=
 | 
-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, 9, -10, 8 | 
In[6]:=
 | 
DTCode[K]
 | 
Out[6]=
 | 
4 10 14 12 18 2 16 6 20 8 | 
(The path below may be different on your system)
In[7]:=
 | 
AppendTo[$Path, "C:/bin/LinKnot/"];
 | 
In[8]:=
 | 
ConwayNotation[K]
 | 
Out[8]=
 | 
[211,21,21] | 
In[9]:=
 | 
br = BR[K]
 | 
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
 | 
Out[9]=
 | 
In[10]:=
 | 
{First[br], Crossings[br], BraidIndex[K]}
 | 
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
 | 
KnotTheory::loading: Loading precomputed data in IndianaData`.
 | 
Out[10]=
 | 
{ 5, 12, 5 } | 
In[11]:=
 | 
Show[BraidPlot[br]]
 | 
Out[11]=
 | 
-Graphics- | 
In[12]:=
 | 
Show[DrawMorseLink[K]]
 | 
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
 
 | 
Out[12]=
 | 
-Graphics- | 
In[13]:=
 | 
ap = ArcPresentation[K]
 | 
Out[13]=
 | 
ArcPresentation[{15, 3}, {4, 2}, {3, 7}, {1, 4}, {6, 13}, {8, 10}, {7, 9}, {5, 8}, {2, 6}, {14, 11}, {10, 12}, {9, 5}, {11, 1}, {13, 15}, {12, 14}] | 
In[14]:=
 | 
Draw[ap]
 | 
 
 | 
Out[14]=
 | 
-Graphics- | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["10 69"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 87, 2 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["10 69"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{} | 
Vassiliev invariants
| V2 and V3: | (2, 4) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 69. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top.  | 
  | 







