10 70: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_70}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 70 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-5,10,-2,3,-4,2,-6,8,-7,9,-10,5,-9,6,-8,7/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{20}-3 q^{19}+2 q^{18}+7 q^{17}-17 q^{16}+8 q^{15}+25 q^{14}-48 q^{13}+15 q^{12}+58 q^{11}-84 q^{10}+12 q^9+90 q^8-101 q^7-q^6+103 q^5-90 q^4-17 q^3+92 q^2-59 q-26+62 q^{-1} -25 q^{-2} -22 q^{-3} +28 q^{-4} -5 q^{-5} -10 q^{-6} +7 q^{-7} -2 q^{-9} + q^{-10} </math> | |
|||
coloured_jones_3 = <math>q^{39}-3 q^{38}+2 q^{37}+3 q^{36}-q^{35}-11 q^{34}+6 q^{33}+21 q^{32}-13 q^{31}-39 q^{30}+25 q^{29}+68 q^{28}-38 q^{27}-118 q^{26}+56 q^{25}+181 q^{24}-64 q^{23}-260 q^{22}+59 q^{21}+347 q^{20}-40 q^{19}-427 q^{18}+7 q^{17}+487 q^{16}+41 q^{15}-527 q^{14}-90 q^{13}+535 q^{12}+143 q^{11}-521 q^{10}-188 q^9+480 q^8+229 q^7-421 q^6-260 q^5+349 q^4+278 q^3-269 q^2-276 q+183+260 q^{-1} -107 q^{-2} -223 q^{-3} +42 q^{-4} +178 q^{-5} -3 q^{-6} -120 q^{-7} -27 q^{-8} +81 q^{-9} +25 q^{-10} -39 q^{-11} -25 q^{-12} +21 q^{-13} +13 q^{-14} -6 q^{-15} -9 q^{-16} +4 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math> | |
|||
coloured_jones_4 = <math>q^{64}-3 q^{63}+2 q^{62}+3 q^{61}-5 q^{60}+5 q^{59}-13 q^{58}+12 q^{57}+15 q^{56}-27 q^{55}+13 q^{54}-36 q^{53}+49 q^{52}+49 q^{51}-99 q^{50}+3 q^{49}-70 q^{48}+174 q^{47}+149 q^{46}-271 q^{45}-120 q^{44}-161 q^{43}+483 q^{42}+460 q^{41}-518 q^{40}-497 q^{39}-473 q^{38}+949 q^{37}+1130 q^{36}-624 q^{35}-1082 q^{34}-1167 q^{33}+1309 q^{32}+2053 q^{31}-375 q^{30}-1569 q^{29}-2096 q^{28}+1305 q^{27}+2827 q^{26}+163 q^{25}-1663 q^{24}-2883 q^{23}+945 q^{22}+3142 q^{21}+726 q^{20}-1365 q^{19}-3266 q^{18}+423 q^{17}+2971 q^{16}+1147 q^{15}-823 q^{14}-3238 q^{13}-136 q^{12}+2441 q^{11}+1408 q^{10}-160 q^9-2867 q^8-666 q^7+1653 q^6+1471 q^5+516 q^4-2185 q^3-1021 q^2+747 q+1227+991 q^{-1} -1284 q^{-2} -1013 q^{-3} -16 q^{-4} +704 q^{-5} +1052 q^{-6} -460 q^{-7} -654 q^{-8} -361 q^{-9} +173 q^{-10} +725 q^{-11} -5 q^{-12} -226 q^{-13} -308 q^{-14} -93 q^{-15} +324 q^{-16} +80 q^{-17} -129 q^{-19} -103 q^{-20} +92 q^{-21} +30 q^{-22} +34 q^{-23} -27 q^{-24} -43 q^{-25} +20 q^{-26} + q^{-27} +13 q^{-28} -2 q^{-29} -11 q^{-30} +5 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math> | |
|||
coloured_jones_5 = <math>q^{95}-3 q^{94}+2 q^{93}+3 q^{92}-5 q^{91}+q^{90}+3 q^{89}-7 q^{88}+6 q^{87}+11 q^{86}-16 q^{85}-8 q^{84}+12 q^{83}+q^{82}+15 q^{81}+4 q^{80}-44 q^{79}-34 q^{78}+42 q^{77}+87 q^{76}+51 q^{75}-73 q^{74}-208 q^{73}-137 q^{72}+167 q^{71}+437 q^{70}+312 q^{69}-274 q^{68}-835 q^{67}-681 q^{66}+348 q^{65}+1436 q^{64}+1373 q^{63}-269 q^{62}-2273 q^{61}-2472 q^{60}-80 q^{59}+3171 q^{58}+4065 q^{57}+935 q^{56}-4047 q^{55}-6095 q^{54}-2335 q^{53}+4620 q^{52}+8347 q^{51}+4373 q^{50}-4704 q^{49}-10607 q^{48}-6876 q^{47}+4198 q^{46}+12548 q^{45}+9579 q^{44}-3064 q^{43}-13941 q^{42}-12213 q^{41}+1464 q^{40}+14674 q^{39}+14486 q^{38}+350 q^{37}-14697 q^{36}-16191 q^{35}-2244 q^{34}+14173 q^{33}+17305 q^{32}+3936 q^{31}-13214 q^{30}-17773 q^{29}-5444 q^{28}+11957 q^{27}+17793 q^{26}+6668 q^{25}-10513 q^{24}-17367 q^{23}-7718 q^{22}+8886 q^{21}+16646 q^{20}+8619 q^{19}-7105 q^{18}-15615 q^{17}-9401 q^{16}+5138 q^{15}+14282 q^{14}+10023 q^{13}-3010 q^{12}-12602 q^{11}-10415 q^{10}+814 q^9+10572 q^8+10430 q^7+1296 q^6-8196 q^5-9972 q^4-3162 q^3+5682 q^2+8947 q+4517-3141 q^{-1} -7437 q^{-2} -5245 q^{-3} +900 q^{-4} +5565 q^{-5} +5266 q^{-6} +870 q^{-7} -3642 q^{-8} -4645 q^{-9} -1946 q^{-10} +1815 q^{-11} +3645 q^{-12} +2407 q^{-13} -491 q^{-14} -2455 q^{-15} -2224 q^{-16} -452 q^{-17} +1375 q^{-18} +1823 q^{-19} +775 q^{-20} -560 q^{-21} -1175 q^{-22} -850 q^{-23} +46 q^{-24} +707 q^{-25} +637 q^{-26} +163 q^{-27} -286 q^{-28} -441 q^{-29} -209 q^{-30} +105 q^{-31} +219 q^{-32} +162 q^{-33} +15 q^{-34} -118 q^{-35} -100 q^{-36} -11 q^{-37} +26 q^{-38} +49 q^{-39} +32 q^{-40} -19 q^{-41} -26 q^{-42} -3 q^{-44} +4 q^{-45} +12 q^{-46} -3 q^{-47} -7 q^{-48} +3 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math> | |
|||
coloured_jones_6 = <math>q^{132}-3 q^{131}+2 q^{130}+3 q^{129}-5 q^{128}+q^{127}-q^{126}+9 q^{125}-13 q^{124}+2 q^{123}+22 q^{122}-27 q^{121}-q^{120}+4 q^{119}+34 q^{118}-36 q^{117}-15 q^{116}+62 q^{115}-76 q^{114}+q^{113}+48 q^{112}+120 q^{111}-105 q^{110}-118 q^{109}+68 q^{108}-209 q^{107}+82 q^{106}+303 q^{105}+468 q^{104}-208 q^{103}-563 q^{102}-329 q^{101}-769 q^{100}+296 q^{99}+1335 q^{98}+1900 q^{97}+163 q^{96}-1641 q^{95}-2263 q^{94}-3195 q^{93}-80 q^{92}+3845 q^{91}+6496 q^{90}+3249 q^{89}-2433 q^{88}-7081 q^{87}-10749 q^{86}-4297 q^{85}+6688 q^{84}+16430 q^{83}+13649 q^{82}+1459 q^{81}-13393 q^{80}-26300 q^{79}-18239 q^{78}+4228 q^{77}+29736 q^{76}+34569 q^{75}+17057 q^{74}-14246 q^{73}-46801 q^{72}-44892 q^{71}-11370 q^{70}+37819 q^{69}+61374 q^{68}+46633 q^{67}-1246 q^{66}-61813 q^{65}-77627 q^{64}-41330 q^{63}+31612 q^{62}+81939 q^{61}+81732 q^{60}+25819 q^{59}-61850 q^{58}-103039 q^{57}-75846 q^{56}+11423 q^{55}+86852 q^{54}+108599 q^{53}+56676 q^{52}-47652 q^{51}-112329 q^{50}-101819 q^{49}-13005 q^{48}+77413 q^{47}+119771 q^{46}+79786 q^{45}-28125 q^{44}-107350 q^{43}-113575 q^{42}-32309 q^{41}+61603 q^{40}+117779 q^{39}+91486 q^{38}-10585 q^{37}-95095 q^{36}-114274 q^{35}-44687 q^{34}+44956 q^{33}+108708 q^{32}+95399 q^{31}+4470 q^{30}-79576 q^{29}-109084 q^{28}-53794 q^{27}+27115 q^{26}+95237 q^{25}+95588 q^{24}+20213 q^{23}-59806 q^{22}-99283 q^{21}-62145 q^{20}+5585 q^{19}+75646 q^{18}+91588 q^{17}+37316 q^{16}-33836 q^{15}-82040 q^{14}-67029 q^{13}-18577 q^{12}+48061 q^{11}+78980 q^{10}+50761 q^9-4104 q^8-55164 q^7-62105 q^6-38341 q^5+15871 q^4+55016 q^3+52520 q^2+20731 q-22807-44078 q^{-1} -44550 q^{-2} -11026 q^{-3} +24632 q^{-4} +39273 q^{-5} +30852 q^{-6} +4104 q^{-7} -18706 q^{-8} -34494 q^{-9} -22650 q^{-10} -415 q^{-11} +17893 q^{-12} +24460 q^{-13} +15849 q^{-14} +1816 q^{-15} -16305 q^{-16} -18376 q^{-17} -11053 q^{-18} +783 q^{-19} +10573 q^{-20} +13052 q^{-21} +9531 q^{-22} -2150 q^{-23} -7705 q^{-24} -9079 q^{-25} -5370 q^{-26} +390 q^{-27} +5184 q^{-28} +7230 q^{-29} +2754 q^{-30} -408 q^{-31} -3408 q^{-32} -3874 q^{-33} -2504 q^{-34} +243 q^{-35} +2775 q^{-36} +1961 q^{-37} +1388 q^{-38} -189 q^{-39} -1166 q^{-40} -1587 q^{-41} -787 q^{-42} +472 q^{-43} +471 q^{-44} +773 q^{-45} +385 q^{-46} - q^{-47} -493 q^{-48} -402 q^{-49} -5 q^{-50} -54 q^{-51} +185 q^{-52} +169 q^{-53} +125 q^{-54} -92 q^{-55} -103 q^{-56} +7 q^{-57} -62 q^{-58} +14 q^{-59} +30 q^{-60} +52 q^{-61} -18 q^{-62} -22 q^{-63} +17 q^{-64} -17 q^{-65} -2 q^{-66} +14 q^{-68} -4 q^{-69} -8 q^{-70} +7 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_7 = <math>q^{175}-3 q^{174}+2 q^{173}+3 q^{172}-5 q^{171}+q^{170}-q^{169}+5 q^{168}+3 q^{167}-17 q^{166}+13 q^{165}+11 q^{164}-20 q^{163}+q^{162}-4 q^{161}+23 q^{160}+12 q^{159}-63 q^{158}+29 q^{157}+34 q^{156}-34 q^{155}+23 q^{154}-18 q^{153}+55 q^{152}+12 q^{151}-198 q^{150}+3 q^{149}+71 q^{148}+47 q^{147}+230 q^{146}+50 q^{145}+66 q^{144}-145 q^{143}-724 q^{142}-353 q^{141}+13 q^{140}+520 q^{139}+1332 q^{138}+905 q^{137}+355 q^{136}-917 q^{135}-2821 q^{134}-2515 q^{133}-1150 q^{132}+1663 q^{131}+5288 q^{130}+5510 q^{129}+3362 q^{128}-1969 q^{127}-9162 q^{126}-11357 q^{125}-8441 q^{124}+1161 q^{123}+14604 q^{122}+21112 q^{121}+18248 q^{120}+2916 q^{119}-20569 q^{118}-35846 q^{117}-35729 q^{116}-13536 q^{115}+25131 q^{114}+55814 q^{113}+63421 q^{112}+34626 q^{111}-24306 q^{110}-79032 q^{109}-102766 q^{108}-71016 q^{107}+12239 q^{106}+101698 q^{105}+153512 q^{104}+125905 q^{103}+16684 q^{102}-117126 q^{101}-211154 q^{100}-199960 q^{99}-68480 q^{98}+117353 q^{97}+269308 q^{96}+290136 q^{95}+144840 q^{94}-95578 q^{93}-318013 q^{92}-388563 q^{91}-243972 q^{90}+46842 q^{89}+348054 q^{88}+485310 q^{87}+358866 q^{86}+28223 q^{85}-352749 q^{84}-568558 q^{83}-478520 q^{82}-124621 q^{81}+328979 q^{80}+629170 q^{79}+591488 q^{78}+232801 q^{77}-279871 q^{76}-661976 q^{75}-686486 q^{74}-341333 q^{73}+212051 q^{72}+666409 q^{71}+756673 q^{70}+440078 q^{69}-134955 q^{68}-647158 q^{67}-799961 q^{66}-520882 q^{65}+58293 q^{64}+610871 q^{63}+817822 q^{62}+580697 q^{61}+11462 q^{60}-565695 q^{59}-816163 q^{58}-619888 q^{57}-69492 q^{56}+517939 q^{55}+800398 q^{54}+642024 q^{53}+116278 q^{52}-471442 q^{51}-777066 q^{50}-652394 q^{49}-153511 q^{48}+427655 q^{47}+749531 q^{46}+655627 q^{45}+185625 q^{44}-384785 q^{43}-719796 q^{42}-655999 q^{41}-216663 q^{40}+340338 q^{39}+687199 q^{38}+654998 q^{37}+250045 q^{36}-290443 q^{35}-649412 q^{34}-652647 q^{33}-287586 q^{32}+232233 q^{31}+603323 q^{30}+646536 q^{29}+328734 q^{28}-164024 q^{27}-545504 q^{26}-632755 q^{25}-370794 q^{24}+86148 q^{23}+473466 q^{22}+606939 q^{21}+408848 q^{20}-1685 q^{19}-386702 q^{18}-564654 q^{17}-436469 q^{16}-83924 q^{15}+287144 q^{14}+503101 q^{13}+447272 q^{12}+163191 q^{11}-180012 q^{10}-422607 q^9-435763 q^8-227138 q^7+73008 q^6+326292 q^5+399434 q^4+268705 q^3+24117 q^2-221975 q-339762-282160 q^{-1} -101787 q^{-2} +118926 q^{-3} +262600 q^{-4} +267060 q^{-5} +152844 q^{-6} -28173 q^{-7} -177405 q^{-8} -227350 q^{-9} -174130 q^{-10} -41158 q^{-11} +95277 q^{-12} +171190 q^{-13} +167388 q^{-14} +84278 q^{-15} -26119 q^{-16} -109769 q^{-17} -139868 q^{-18} -100408 q^{-19} -22429 q^{-20} +52993 q^{-21} +100264 q^{-22} +94696 q^{-23} +49423 q^{-24} -9197 q^{-25} -59862 q^{-26} -74724 q^{-27} -55918 q^{-28} -18180 q^{-29} +25011 q^{-30} +49184 q^{-31} +49310 q^{-32} +30175 q^{-33} -1650 q^{-34} -25698 q^{-35} -35107 q^{-36} -30072 q^{-37} -11113 q^{-38} +7919 q^{-39} +20617 q^{-40} +23757 q^{-41} +14479 q^{-42} +2152 q^{-43} -8699 q^{-44} -15163 q^{-45} -12732 q^{-46} -6330 q^{-47} +1416 q^{-48} +7932 q^{-49} +8608 q^{-50} +6383 q^{-51} +2116 q^{-52} -2954 q^{-53} -4822 q^{-54} -4734 q^{-55} -2785 q^{-56} +374 q^{-57} +1933 q^{-58} +2786 q^{-59} +2423 q^{-60} +587 q^{-61} -550 q^{-62} -1354 q^{-63} -1434 q^{-64} -631 q^{-65} -213 q^{-66} +446 q^{-67} +864 q^{-68} +490 q^{-69} +218 q^{-70} -137 q^{-71} -324 q^{-72} -175 q^{-73} -247 q^{-74} -81 q^{-75} +171 q^{-76} +125 q^{-77} +112 q^{-78} +4 q^{-79} -47 q^{-80} +22 q^{-81} -62 q^{-82} -62 q^{-83} +19 q^{-84} +18 q^{-85} +32 q^{-86} -4 q^{-87} -19 q^{-88} +25 q^{-89} -4 q^{-90} -16 q^{-91} +10 q^{-94} -2 q^{-95} -9 q^{-96} +6 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 70]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[5, 16, 6, 17], X[11, 19, 12, 18], X[13, 1, 14, 20], |
|||
X[19, 13, 20, 12], X[17, 15, 18, 14], X[15, 6, 16, 7]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 70]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9, |
|||
6, -8, 7]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 70]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 16, 10, 2, 18, 20, 6, 14, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 70]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, 2, -1, -3, 2, 2, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 70]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 70]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_70_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 70]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 70]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 16 2 3 |
|||
-19 + t - -- + -- + 16 t - 7 t + t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 70]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 - 3 z - z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 70]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 70]], KnotSignature[Knot[10, 70]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{67, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 70]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 5 2 3 4 5 6 7 |
|||
-8 + q - -- + - + 10 q - 11 q + 11 q - 9 q + 6 q - 3 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 70]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 70]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 2 2 2 4 6 8 10 14 |
|||
-1 + q + q + -- - -- + q - 2 q + 3 q - q + q - 2 q + |
|||
4 2 |
|||
q q |
|||
16 18 22 |
|||
2 q - q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 70]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 |
|||
-6 2 3 2 2 z 4 z 4 z 2 2 4 |
|||
-3 + a - -- + -- + 2 a - 5 z + -- - ---- + ---- + a z - 2 z - |
|||
4 2 6 4 2 |
|||
a a a a a |
|||
4 4 6 |
|||
2 z 3 z z |
|||
---- + ---- + -- |
|||
4 2 2 |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 70]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-6 2 3 2 z z z 2 z 4 z |
|||
-3 - a - -- - -- - 2 a + -- + -- + -- - a z + 10 z - -- + ---- + |
|||
4 2 7 5 3 8 6 |
|||
a a a a a a a |
|||
2 2 3 3 3 4 |
|||
9 z 9 z 2 2 3 z 2 z 4 z 3 4 z |
|||
---- + ---- + 5 a z - ---- + ---- + ---- + 5 a z - 7 z + -- - |
|||
4 2 7 3 a 8 |
|||
a a a a a |
|||
4 4 4 5 5 5 5 |
|||
6 z 12 z 8 z 2 4 3 z 4 z 11 z 10 z |
|||
---- - ----- - ---- - 4 a z + ---- - ---- - ----- - ----- - |
|||
6 4 2 7 5 3 a |
|||
a a a a a a |
|||
6 6 6 7 7 7 |
|||
5 6 5 z 3 z 5 z 2 6 5 z 6 z 3 z |
|||
6 a z - 2 z + ---- + ---- - ---- + a z + ---- + ---- + ---- + |
|||
6 4 2 5 3 a |
|||
a a a a a |
|||
8 8 9 9 |
|||
7 8 3 z 5 z z z |
|||
2 a z + 2 z + ---- + ---- + -- + -- |
|||
4 2 3 a |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 70]], Vassiliev[3][Knot[10, 70]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 70]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 4 1 4 4 q |
|||
6 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
3 5 5 2 7 2 7 3 9 3 9 4 |
|||
6 q t + 5 q t + 5 q t + 6 q t + 4 q t + 5 q t + 2 q t + |
|||
11 4 11 5 13 5 15 6 |
|||
4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 70], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 7 10 5 28 22 25 62 2 |
|||
-26 + q - -- + -- - -- - -- + -- - -- - -- + -- - 59 q + 92 q - |
|||
9 7 6 5 4 3 2 q |
|||
q q q q q q q |
|||
3 4 5 6 7 8 9 10 |
|||
17 q - 90 q + 103 q - q - 101 q + 90 q + 12 q - 84 q + |
|||
11 12 13 14 15 16 17 18 |
|||
58 q + 15 q - 48 q + 25 q + 8 q - 17 q + 7 q + 2 q - |
|||
19 20 |
|||
3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 70's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,19,12,18 X13,1,14,20 X19,13,20,12 X17,15,18,14 X15,6,16,7 |
Gauss code | -1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 8 16 10 2 18 20 6 14 12 |
Conway Notation | [22,3,2+] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{13, 10}, {11, 9}, {10, 12}, {3, 11}, {8, 4}, {9, 7}, {5, 8}, {7, 13}, {4, 6}, {2, 5}, {1, 3}, {12, 2}, {6, 1}] |
[edit Notes on presentations of 10 70]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 70"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,10,8,11 X3948 X9,3,10,2 X5,16,6,17 X11,19,12,18 X13,1,14,20 X19,13,20,12 X17,15,18,14 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -5, 10, -2, 3, -4, 2, -6, 8, -7, 9, -10, 5, -9, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 16 10 2 18 20 6 14 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,3,2+] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 10}, {11, 9}, {10, 12}, {3, 11}, {8, 4}, {9, 7}, {5, 8}, {7, 13}, {4, 6}, {2, 5}, {1, 3}, {12, 2}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 70"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 67, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 70"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-3, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 70. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|