10 77: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 77 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,8,-7,9,-3,4,-5,3,-9,6,-8,7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=77|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-4,5,-10,2,-6,8,-7,9,-3,4,-5,3,-9,6,-8,7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_65]], [[K11n71]], [[K11n75]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_65]], [[K11n71]], [[K11n75]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 73: | Line 40: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-3 q^{22}+q^{21}+9 q^{20}-15 q^{19}-2 q^{18}+33 q^{17}-33 q^{16}-18 q^{15}+67 q^{14}-44 q^{13}-43 q^{12}+95 q^{11}-43 q^{10}-63 q^9+102 q^8-31 q^7-65 q^6+82 q^5-13 q^4-50 q^3+47 q^2-q-26+18 q^{-1} + q^{-2} -9 q^{-3} +5 q^{-4} -2 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-q^{43}-4 q^{42}-2 q^{41}+12 q^{40}+5 q^{39}-24 q^{38}-14 q^{37}+41 q^{36}+33 q^{35}-57 q^{34}-72 q^{33}+76 q^{32}+118 q^{31}-76 q^{30}-182 q^{29}+67 q^{28}+245 q^{27}-35 q^{26}-313 q^{25}-q^{24}+362 q^{23}+54 q^{22}-404 q^{21}-104 q^{20}+427 q^{19}+147 q^{18}-427 q^{17}-194 q^{16}+420 q^{15}+212 q^{14}-371 q^{13}-245 q^{12}+335 q^{11}+235 q^{10}-255 q^9-240 q^8+200 q^7+202 q^6-119 q^5-180 q^4+79 q^3+127 q^2-32 q-91+13 q^{-1} +57 q^{-2} -5 q^{-3} -31 q^{-4} +18 q^{-6} -3 q^{-7} -7 q^{-8} +6 q^{-10} -3 q^{-11} - q^{-12} +2 q^{-14} - q^{-15} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{23}-3 q^{22}+q^{21}+9 q^{20}-15 q^{19}-2 q^{18}+33 q^{17}-33 q^{16}-18 q^{15}+67 q^{14}-44 q^{13}-43 q^{12}+95 q^{11}-43 q^{10}-63 q^9+102 q^8-31 q^7-65 q^6+82 q^5-13 q^4-50 q^3+47 q^2-q-26+18 q^{-1} + q^{-2} -9 q^{-3} +5 q^{-4} -2 q^{-6} + q^{-7} </math>|J3=<math>-q^{45}+3 q^{44}-q^{43}-4 q^{42}-2 q^{41}+12 q^{40}+5 q^{39}-24 q^{38}-14 q^{37}+41 q^{36}+33 q^{35}-57 q^{34}-72 q^{33}+76 q^{32}+118 q^{31}-76 q^{30}-182 q^{29}+67 q^{28}+245 q^{27}-35 q^{26}-313 q^{25}-q^{24}+362 q^{23}+54 q^{22}-404 q^{21}-104 q^{20}+427 q^{19}+147 q^{18}-427 q^{17}-194 q^{16}+420 q^{15}+212 q^{14}-371 q^{13}-245 q^{12}+335 q^{11}+235 q^{10}-255 q^9-240 q^8+200 q^7+202 q^6-119 q^5-180 q^4+79 q^3+127 q^2-32 q-91+13 q^{-1} +57 q^{-2} -5 q^{-3} -31 q^{-4} +18 q^{-6} -3 q^{-7} -7 q^{-8} +6 q^{-10} -3 q^{-11} - q^{-12} +2 q^{-14} - q^{-15} </math>|J4=<math>q^{74}-3 q^{73}+q^{72}+4 q^{71}-3 q^{70}+5 q^{69}-15 q^{68}+3 q^{67}+20 q^{66}-8 q^{65}+17 q^{64}-60 q^{63}-4 q^{62}+71 q^{61}+12 q^{60}+58 q^{59}-179 q^{58}-81 q^{57}+134 q^{56}+117 q^{55}+242 q^{54}-347 q^{53}-330 q^{52}+61 q^{51}+273 q^{50}+698 q^{49}-373 q^{48}-701 q^{47}-318 q^{46}+275 q^{45}+1368 q^{44}-79 q^{43}-972 q^{42}-948 q^{41}-30 q^{40}+1993 q^{39}+472 q^{38}-968 q^{37}-1583 q^{36}-560 q^{35}+2368 q^{34}+1043 q^{33}-733 q^{32}-2010 q^{31}-1101 q^{30}+2443 q^{29}+1455 q^{28}-386 q^{27}-2163 q^{26}-1513 q^{25}+2241 q^{24}+1652 q^{23}+9 q^{22}-2024 q^{21}-1751 q^{20}+1761 q^{19}+1605 q^{18}+424 q^{17}-1585 q^{16}-1769 q^{15}+1078 q^{14}+1277 q^{13}+733 q^{12}-928 q^{11}-1491 q^{10}+410 q^9+743 q^8+771 q^7-308 q^6-978 q^5+20 q^4+242 q^3+540 q^2+33 q-470-63 q^{-1} -21 q^{-2} +256 q^{-3} +93 q^{-4} -167 q^{-5} -14 q^{-6} -67 q^{-7} +82 q^{-8} +48 q^{-9} -51 q^{-10} +18 q^{-11} -36 q^{-12} +19 q^{-13} +13 q^{-14} -19 q^{-15} +16 q^{-16} -10 q^{-17} +4 q^{-18} +2 q^{-19} -8 q^{-20} +6 q^{-21} - q^{-22} + q^{-23} -2 q^{-25} + q^{-26} </math>|J5=<math>-q^{110}+3 q^{109}-q^{108}-4 q^{107}+3 q^{106}-2 q^{104}+7 q^{103}+q^{102}-15 q^{101}+q^{100}+10 q^{99}+3 q^{98}+15 q^{97}-4 q^{96}-41 q^{95}-33 q^{94}+25 q^{93}+69 q^{92}+76 q^{91}+6 q^{90}-138 q^{89}-191 q^{88}-63 q^{87}+195 q^{86}+375 q^{85}+239 q^{84}-198 q^{83}-618 q^{82}-587 q^{81}+36 q^{80}+889 q^{79}+1126 q^{78}+339 q^{77}-992 q^{76}-1809 q^{75}-1117 q^{74}+879 q^{73}+2549 q^{72}+2171 q^{71}-327 q^{70}-3102 q^{69}-3574 q^{68}-688 q^{67}+3410 q^{66}+5010 q^{65}+2174 q^{64}-3224 q^{63}-6437 q^{62}-3981 q^{61}+2610 q^{60}+7549 q^{59}+5966 q^{58}-1529 q^{57}-8382 q^{56}-7873 q^{55}+194 q^{54}+8749 q^{53}+9623 q^{52}+1304 q^{51}-8821 q^{50}-11056 q^{49}-2752 q^{48}+8581 q^{47}+12138 q^{46}+4116 q^{45}-8139 q^{44}-12923 q^{43}-5309 q^{42}+7612 q^{41}+13343 q^{40}+6299 q^{39}-6836 q^{38}-13563 q^{37}-7221 q^{36}+6107 q^{35}+13400 q^{34}+7900 q^{33}-4975 q^{32}-13037 q^{31}-8592 q^{30}+3907 q^{29}+12221 q^{28}+8941 q^{27}-2385 q^{26}-11129 q^{25}-9210 q^{24}+1042 q^{23}+9537 q^{22}+8976 q^{21}+557 q^{20}-7756 q^{19}-8495 q^{18}-1680 q^{17}+5683 q^{16}+7434 q^{15}+2753 q^{14}-3770 q^{13}-6212 q^{12}-3079 q^{11}+1975 q^{10}+4656 q^9+3194 q^8-650 q^7-3276 q^6-2737 q^5-234 q^4+1955 q^3+2194 q^2+672 q-1026-1535 q^{-1} -757 q^{-2} +389 q^{-3} +955 q^{-4} +664 q^{-5} -44 q^{-6} -539 q^{-7} -477 q^{-8} -84 q^{-9} +239 q^{-10} +308 q^{-11} +125 q^{-12} -110 q^{-13} -159 q^{-14} -91 q^{-15} +10 q^{-16} +88 q^{-17} +70 q^{-18} -13 q^{-19} -24 q^{-20} -25 q^{-21} -25 q^{-22} +15 q^{-23} +24 q^{-24} -5 q^{-25} +3 q^{-26} +4 q^{-27} -14 q^{-28} -2 q^{-29} +7 q^{-30} -4 q^{-31} +2 q^{-32} +6 q^{-33} -4 q^{-34} -2 q^{-35} + q^{-36} - q^{-37} +2 q^{-39} - q^{-40} </math>|J6=Not Available|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{74}-3 q^{73}+q^{72}+4 q^{71}-3 q^{70}+5 q^{69}-15 q^{68}+3 q^{67}+20 q^{66}-8 q^{65}+17 q^{64}-60 q^{63}-4 q^{62}+71 q^{61}+12 q^{60}+58 q^{59}-179 q^{58}-81 q^{57}+134 q^{56}+117 q^{55}+242 q^{54}-347 q^{53}-330 q^{52}+61 q^{51}+273 q^{50}+698 q^{49}-373 q^{48}-701 q^{47}-318 q^{46}+275 q^{45}+1368 q^{44}-79 q^{43}-972 q^{42}-948 q^{41}-30 q^{40}+1993 q^{39}+472 q^{38}-968 q^{37}-1583 q^{36}-560 q^{35}+2368 q^{34}+1043 q^{33}-733 q^{32}-2010 q^{31}-1101 q^{30}+2443 q^{29}+1455 q^{28}-386 q^{27}-2163 q^{26}-1513 q^{25}+2241 q^{24}+1652 q^{23}+9 q^{22}-2024 q^{21}-1751 q^{20}+1761 q^{19}+1605 q^{18}+424 q^{17}-1585 q^{16}-1769 q^{15}+1078 q^{14}+1277 q^{13}+733 q^{12}-928 q^{11}-1491 q^{10}+410 q^9+743 q^8+771 q^7-308 q^6-978 q^5+20 q^4+242 q^3+540 q^2+33 q-470-63 q^{-1} -21 q^{-2} +256 q^{-3} +93 q^{-4} -167 q^{-5} -14 q^{-6} -67 q^{-7} +82 q^{-8} +48 q^{-9} -51 q^{-10} +18 q^{-11} -36 q^{-12} +19 q^{-13} +13 q^{-14} -19 q^{-15} +16 q^{-16} -10 q^{-17} +4 q^{-18} +2 q^{-19} -8 q^{-20} +6 q^{-21} - q^{-22} + q^{-23} -2 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-q^{108}-4 q^{107}+3 q^{106}-2 q^{104}+7 q^{103}+q^{102}-15 q^{101}+q^{100}+10 q^{99}+3 q^{98}+15 q^{97}-4 q^{96}-41 q^{95}-33 q^{94}+25 q^{93}+69 q^{92}+76 q^{91}+6 q^{90}-138 q^{89}-191 q^{88}-63 q^{87}+195 q^{86}+375 q^{85}+239 q^{84}-198 q^{83}-618 q^{82}-587 q^{81}+36 q^{80}+889 q^{79}+1126 q^{78}+339 q^{77}-992 q^{76}-1809 q^{75}-1117 q^{74}+879 q^{73}+2549 q^{72}+2171 q^{71}-327 q^{70}-3102 q^{69}-3574 q^{68}-688 q^{67}+3410 q^{66}+5010 q^{65}+2174 q^{64}-3224 q^{63}-6437 q^{62}-3981 q^{61}+2610 q^{60}+7549 q^{59}+5966 q^{58}-1529 q^{57}-8382 q^{56}-7873 q^{55}+194 q^{54}+8749 q^{53}+9623 q^{52}+1304 q^{51}-8821 q^{50}-11056 q^{49}-2752 q^{48}+8581 q^{47}+12138 q^{46}+4116 q^{45}-8139 q^{44}-12923 q^{43}-5309 q^{42}+7612 q^{41}+13343 q^{40}+6299 q^{39}-6836 q^{38}-13563 q^{37}-7221 q^{36}+6107 q^{35}+13400 q^{34}+7900 q^{33}-4975 q^{32}-13037 q^{31}-8592 q^{30}+3907 q^{29}+12221 q^{28}+8941 q^{27}-2385 q^{26}-11129 q^{25}-9210 q^{24}+1042 q^{23}+9537 q^{22}+8976 q^{21}+557 q^{20}-7756 q^{19}-8495 q^{18}-1680 q^{17}+5683 q^{16}+7434 q^{15}+2753 q^{14}-3770 q^{13}-6212 q^{12}-3079 q^{11}+1975 q^{10}+4656 q^9+3194 q^8-650 q^7-3276 q^6-2737 q^5-234 q^4+1955 q^3+2194 q^2+672 q-1026-1535 q^{-1} -757 q^{-2} +389 q^{-3} +955 q^{-4} +664 q^{-5} -44 q^{-6} -539 q^{-7} -477 q^{-8} -84 q^{-9} +239 q^{-10} +308 q^{-11} +125 q^{-12} -110 q^{-13} -159 q^{-14} -91 q^{-15} +10 q^{-16} +88 q^{-17} +70 q^{-18} -13 q^{-19} -24 q^{-20} -25 q^{-21} -25 q^{-22} +15 q^{-23} +24 q^{-24} -5 q^{-25} +3 q^{-26} +4 q^{-27} -14 q^{-28} -2 q^{-29} +7 q^{-30} -4 q^{-31} +2 q^{-32} +6 q^{-33} -4 q^{-34} -2 q^{-35} + q^{-36} - q^{-37} +2 q^{-39} - q^{-40} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 77]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14], |
|||
X[15, 7, 16, 6], X[9, 19, 10, 18], X[11, 1, 12, 20], |
X[15, 7, 16, 6], X[9, 19, 10, 18], X[11, 1, 12, 20], |
||
X[19, 11, 20, 10], X[17, 13, 18, 12], X[7, 2, 8, 3]]</nowiki></ |
X[19, 11, 20, 10], X[17, 13, 18, 12], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 77]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, |
|||
6, -8, 7]</nowiki></ |
6, -8, 7]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 77]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 77]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 14, 2, 18, 20, 16, 6, 12, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 77]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 1, 2, -1, -3, 2, 2, -3, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 77]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_77_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 77]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 77]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 77]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 77]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_77_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 77]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 77]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 14 2 3 |
|||
-17 + -- - -- + -- + 14 t - 7 t + 2 t |
-17 + -- - -- + -- + 14 t - 7 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 77]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 77]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 4 z + 5 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 65], Knot[10, 77], Knot[11, NonAlternating, 71], |
|||
Knot[11, NonAlternating, 75]}</nowiki></ |
Knot[11, NonAlternating, 75]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 77]], KnotSignature[Knot[10, 77]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 77]], KnotSignature[Knot[10, 77]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 77]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{63, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 77]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 7 8 |
|||
-4 - q + - + 8 q - 9 q + 11 q - 10 q + 8 q - 6 q + 3 q - q |
-4 - q + - + 8 q - 9 q + 11 q - 10 q + 8 q - 6 q + 3 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 77]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 77]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 77]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -2 2 6 8 12 14 16 18 20 |
|||
-1 - q - q + 3 q + 4 q + 2 q + q - 3 q + q - q - q + |
-1 - q - q + 3 q + 4 q + 2 q + q - 3 q + q - q - q + |
||
22 24 |
22 24 |
||
q - q</nowiki></ |
q - q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 77]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 77]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 |
|||
-6 -4 5 2 2 z 2 z 7 z 4 z 3 z |
-6 -4 5 2 2 z 2 z 7 z 4 z 3 z |
||
-2 - a - a + -- - 3 z - ---- + ---- + ---- - z - -- + ---- + |
-2 - a - a + -- - 3 z - ---- + ---- + ---- - z - -- + ---- + |
||
Line 159: | Line 196: | ||
---- + -- + -- |
---- + -- + -- |
||
2 4 2 |
2 4 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 77]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 77]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-6 -4 5 z z z 3 z 4 z 2 2 z |
-6 -4 5 z z z 3 z 4 z 2 2 z |
||
-2 + a - a - -- + -- - -- - -- + --- + --- + 2 a z + 4 z + ---- - |
-2 + a - a - -- + -- - -- - -- + --- + --- + 2 a z + 4 z + ---- - |
||
Line 190: | Line 231: | ||
-- + -- |
-- + -- |
||
5 3 |
5 3 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 77]], Vassiliev[3][Knot[10, 77]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 77]], Vassiliev[3][Knot[10, 77]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 77]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 5}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 77]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 q 3 5 |
|||
5 q + 4 q + ----- + ----- + ---- + --- + - + 5 q t + 4 q t + |
5 q + 4 q + ----- + ----- + ---- + --- + - + 5 q t + 4 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 205: | Line 254: | ||
11 5 13 5 13 6 15 6 17 7 |
11 5 13 5 13 6 15 6 17 7 |
||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></ |
2 q t + 4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 77], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 77], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 5 9 -2 18 2 3 4 |
|||
-26 + q - -- + -- - -- + q + -- - q + 47 q - 50 q - 13 q + |
-26 + q - -- + -- - -- + q + -- - q + 47 q - 50 q - 13 q + |
||
6 4 3 q |
6 4 3 q |
||
Line 220: | Line 273: | ||
21 22 23 |
21 22 23 |
||
q - 3 q + q</nowiki></ |
q - 3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 77's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,19,10,18 X11,1,12,20 X19,11,20,10 X17,13,18,12 X7283 |
Gauss code | -1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, 6, -8, 7 |
Dowker-Thistlethwaite code | 4 8 14 2 18 20 16 6 12 10 |
Conway Notation | [3,21,2++] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 9}, {2, 8}, {1, 3}, {11, 2}, {9, 1}] |
[edit Notes on presentations of 10 77]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 77"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X13,17,14,16 X5,15,6,14 X15,7,16,6 X9,19,10,18 X11,1,12,20 X19,11,20,10 X17,13,18,12 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 2 18 20 16 6 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,21,2++] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {6, 11}, {10, 12}, {5, 7}, {4, 6}, {8, 5}, {7, 9}, {2, 8}, {1, 3}, {11, 2}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-2 q^{18}+6 q^{16}-12 q^{14}+23 q^{12}-38 q^{10}+58 q^8-92 q^6+128 q^4-182 q^2+234-300 q^{-2} +352 q^{-4} -382 q^{-6} +392 q^{-8} -338 q^{-10} +257 q^{-12} -96 q^{-14} -70 q^{-16} +282 q^{-18} -482 q^{-20} +652 q^{-22} -784 q^{-24} +832 q^{-26} -831 q^{-28} +740 q^{-30} -598 q^{-32} +410 q^{-34} -198 q^{-36} -8 q^{-38} +188 q^{-40} -324 q^{-42} +406 q^{-44} -436 q^{-46} +416 q^{-48} -360 q^{-50} +291 q^{-52} -218 q^{-54} +148 q^{-56} -92 q^{-58} +54 q^{-60} -28 q^{-62} +12 q^{-64} -4 q^{-66} + q^{-68} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 77"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_65, K11n71, K11n75,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 77"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_65, K11n71, K11n75,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 77. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|