10 85: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 10 | |
|||
<span id="top"></span> |
|||
k = 85 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,5,-6,2,-1,4,-5,6,-8,3,-9,7,-4,10,-2,8,-3,9,-7/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|- valign=top |
|||
</table> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_crossings = 10 | |
|||
|{{Rolfsen Knot Site Links|n=10|k=85|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,5,-6,2,-1,4,-5,6,-8,3,-9,7,-4,10,-2,8,-3,9,-7/goTop.html}} |
|||
braid_width = 3 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_index = 3 | |
|||
|} |
|||
same_alexander = | |
|||
same_jones = | |
|||
<br style="clear:both" /> |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 48: | Line 39: | ||
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^5-3 q^4-q^3+10 q^2-8 q-11+25 q^{-1} -5 q^{-2} -30 q^{-3} +35 q^{-4} +6 q^{-5} -47 q^{-6} +36 q^{-7} +20 q^{-8} -57 q^{-9} +29 q^{-10} +31 q^{-11} -54 q^{-12} +17 q^{-13} +32 q^{-14} -40 q^{-15} +9 q^{-16} +21 q^{-17} -24 q^{-18} +8 q^{-19} +8 q^{-20} -12 q^{-21} +5 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} </math> | |
|||
coloured_jones_3 = <math>-q^{12}+3 q^{11}+q^{10}-5 q^9-8 q^8+8 q^7+20 q^6-7 q^5-34 q^4-6 q^3+50 q^2+26 q-54-56 q^{-1} +53 q^{-2} +77 q^{-3} -27 q^{-4} -104 q^{-5} +10 q^{-6} +101 q^{-7} +28 q^{-8} -104 q^{-9} -45 q^{-10} +81 q^{-11} +73 q^{-12} -69 q^{-13} -79 q^{-14} +38 q^{-15} +95 q^{-16} -17 q^{-17} -98 q^{-18} -15 q^{-19} +102 q^{-20} +43 q^{-21} -97 q^{-22} -67 q^{-23} +80 q^{-24} +88 q^{-25} -61 q^{-26} -88 q^{-27} +33 q^{-28} +77 q^{-29} -11 q^{-30} -53 q^{-31} -5 q^{-32} +28 q^{-33} +9 q^{-34} -6 q^{-35} -7 q^{-36} -8 q^{-37} +5 q^{-38} +10 q^{-39} + q^{-40} -11 q^{-41} - q^{-42} +7 q^{-43} -2 q^{-45} -2 q^{-46} +3 q^{-47} - q^{-48} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{22}-3 q^{21}-q^{20}+5 q^{19}+3 q^{18}+8 q^{17}-18 q^{16}-18 q^{15}+5 q^{14}+16 q^{13}+60 q^{12}-19 q^{11}-62 q^{10}-49 q^9-20 q^8+151 q^7+63 q^6-36 q^5-125 q^4-181 q^3+147 q^2+156 q+127-58 q^{-1} -340 q^{-2} -5 q^{-3} +69 q^{-4} +262 q^{-5} +170 q^{-6} -295 q^{-7} -105 q^{-8} -184 q^{-9} +169 q^{-10} +336 q^{-11} -76 q^{-12} +29 q^{-13} -374 q^{-14} -104 q^{-15} +271 q^{-16} +104 q^{-17} +337 q^{-18} -358 q^{-19} -366 q^{-20} +37 q^{-21} +142 q^{-22} +644 q^{-23} -205 q^{-24} -527 q^{-25} -220 q^{-26} +102 q^{-27} +884 q^{-28} -28 q^{-29} -643 q^{-30} -461 q^{-31} +60 q^{-32} +1091 q^{-33} +171 q^{-34} -724 q^{-35} -716 q^{-36} -48 q^{-37} +1218 q^{-38} +437 q^{-39} -644 q^{-40} -898 q^{-41} -282 q^{-42} +1098 q^{-43} +645 q^{-44} -338 q^{-45} -815 q^{-46} -499 q^{-47} +712 q^{-48} +603 q^{-49} -13 q^{-50} -485 q^{-51} -494 q^{-52} +309 q^{-53} +350 q^{-54} +119 q^{-55} -162 q^{-56} -319 q^{-57} +91 q^{-58} +119 q^{-59} +93 q^{-60} -8 q^{-61} -147 q^{-62} +24 q^{-63} +13 q^{-64} +40 q^{-65} +21 q^{-66} -52 q^{-67} +11 q^{-68} -7 q^{-69} +10 q^{-70} +10 q^{-71} -14 q^{-72} +5 q^{-73} -3 q^{-74} +2 q^{-75} +2 q^{-76} -3 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_5 = <math>-q^{35}+3 q^{34}+q^{33}-5 q^{32}-3 q^{31}-3 q^{30}+2 q^{29}+16 q^{28}+21 q^{27}-7 q^{26}-29 q^{25}-41 q^{24}-28 q^{23}+29 q^{22}+93 q^{21}+89 q^{20}-3 q^{19}-112 q^{18}-174 q^{17}-114 q^{16}+83 q^{15}+265 q^{14}+259 q^{13}+43 q^{12}-242 q^{11}-419 q^{10}-284 q^9+121 q^8+472 q^7+509 q^6+169 q^5-344 q^4-664 q^3-481 q^2+44 q+568+728 q^{-1} +358 q^{-2} -273 q^{-3} -697 q^{-4} -698 q^{-5} -235 q^{-6} +428 q^{-7} +810 q^{-8} +669 q^{-9} +162 q^{-10} -574 q^{-11} -1022 q^{-12} -775 q^{-13} +44 q^{-14} +947 q^{-15} +1377 q^{-16} +769 q^{-17} -627 q^{-18} -1706 q^{-19} -1571 q^{-20} -121 q^{-21} +1756 q^{-22} +2364 q^{-23} +955 q^{-24} -1455 q^{-25} -2896 q^{-26} -1944 q^{-27} +934 q^{-28} +3241 q^{-29} +2784 q^{-30} -223 q^{-31} -3309 q^{-32} -3582 q^{-33} -489 q^{-34} +3255 q^{-35} +4141 q^{-36} +1194 q^{-37} -3072 q^{-38} -4641 q^{-39} -1784 q^{-40} +2933 q^{-41} +5000 q^{-42} +2300 q^{-43} -2798 q^{-44} -5391 q^{-45} -2771 q^{-46} +2733 q^{-47} +5799 q^{-48} +3259 q^{-49} -2644 q^{-50} -6212 q^{-51} -3845 q^{-52} +2423 q^{-53} +6596 q^{-54} +4500 q^{-55} -2012 q^{-56} -6748 q^{-57} -5158 q^{-58} +1309 q^{-59} +6590 q^{-60} +5694 q^{-61} -452 q^{-62} -6008 q^{-63} -5906 q^{-64} -476 q^{-65} +5068 q^{-66} +5716 q^{-67} +1249 q^{-68} -3906 q^{-69} -5120 q^{-70} -1731 q^{-71} +2745 q^{-72} +4217 q^{-73} +1863 q^{-74} -1721 q^{-75} -3230 q^{-76} -1709 q^{-77} +979 q^{-78} +2297 q^{-79} +1377 q^{-80} -499 q^{-81} -1517 q^{-82} -1018 q^{-83} +217 q^{-84} +965 q^{-85} +698 q^{-86} -97 q^{-87} -572 q^{-88} -436 q^{-89} +11 q^{-90} +330 q^{-91} +276 q^{-92} +5 q^{-93} -184 q^{-94} -150 q^{-95} -12 q^{-96} +84 q^{-97} +83 q^{-98} +17 q^{-99} -44 q^{-100} -44 q^{-101} +2 q^{-102} +14 q^{-103} +11 q^{-104} +10 q^{-105} -10 q^{-106} -9 q^{-107} +5 q^{-108} +2 q^{-109} -2 q^{-110} +3 q^{-111} -2 q^{-112} -2 q^{-113} +3 q^{-114} - q^{-115} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{51}-3 q^{50}-q^{49}+5 q^{48}+3 q^{47}+3 q^{46}-7 q^{45}-19 q^{43}-19 q^{42}+19 q^{41}+30 q^{40}+47 q^{39}+11 q^{38}+14 q^{37}-82 q^{36}-132 q^{35}-65 q^{34}+12 q^{33}+153 q^{32}+172 q^{31}+271 q^{30}+10 q^{29}-263 q^{28}-386 q^{27}-392 q^{26}-101 q^{25}+163 q^{24}+779 q^{23}+674 q^{22}+295 q^{21}-280 q^{20}-857 q^{19}-1017 q^{18}-903 q^{17}+386 q^{16}+1025 q^{15}+1455 q^{14}+1100 q^{13}+166 q^{12}-999 q^{11}-2164 q^{10}-1355 q^9-624 q^8+912 q^7+1894 q^6+2239 q^5+1316 q^4-838 q^3-1514 q^2-2567 q-1844-637 q^{-1} +1515 q^{-2} +2761 q^{-3} +2226 q^{-4} +2025 q^{-5} -477 q^{-6} -2275 q^{-7} -3943 q^{-8} -2954 q^{-9} -863 q^{-10} +1443 q^{-11} +4990 q^{-12} +5003 q^{-13} +3108 q^{-14} -1916 q^{-15} -5439 q^{-16} -7154 q^{-17} -5509 q^{-18} +1360 q^{-19} +7112 q^{-20} +10282 q^{-21} +6332 q^{-22} -531 q^{-23} -8862 q^{-24} -13337 q^{-25} -8283 q^{-26} +1388 q^{-27} +12063 q^{-28} +14700 q^{-29} +9925 q^{-30} -2652 q^{-31} -15350 q^{-32} -17506 q^{-33} -9413 q^{-34} +6216 q^{-35} +17288 q^{-36} +19631 q^{-37} +8147 q^{-38} -10274 q^{-39} -21296 q^{-40} -19434 q^{-41} -3723 q^{-42} +13562 q^{-43} +24478 q^{-44} +18265 q^{-45} -1619 q^{-46} -19621 q^{-47} -25325 q^{-48} -13112 q^{-49} +6851 q^{-50} +24738 q^{-51} +24923 q^{-52} +6503 q^{-53} -15552 q^{-54} -27477 q^{-55} -19579 q^{-56} +833 q^{-57} +23230 q^{-58} +28554 q^{-59} +12025 q^{-60} -12374 q^{-61} -28506 q^{-62} -23672 q^{-63} -2804 q^{-64} +22847 q^{-65} +31668 q^{-66} +15869 q^{-67} -11121 q^{-68} -30875 q^{-69} -28059 q^{-70} -5745 q^{-71} +23709 q^{-72} +36240 q^{-73} +21095 q^{-74} -8973 q^{-75} -33504 q^{-76} -34205 q^{-77} -11591 q^{-78} +21746 q^{-79} +39864 q^{-80} +28525 q^{-81} -2002 q^{-82} -31212 q^{-83} -38372 q^{-84} -20202 q^{-85} +13247 q^{-86} +36662 q^{-87} +33096 q^{-88} +8206 q^{-89} -21136 q^{-90} -34513 q^{-91} -25271 q^{-92} +1577 q^{-93} +25208 q^{-94} +29091 q^{-95} +14341 q^{-96} -8417 q^{-97} -22898 q^{-98} -21870 q^{-99} -5524 q^{-100} +12090 q^{-101} +18449 q^{-102} +12608 q^{-103} -603 q^{-104} -10862 q^{-105} -13240 q^{-106} -5608 q^{-107} +4063 q^{-108} +8467 q^{-109} +6986 q^{-110} +1100 q^{-111} -3872 q^{-112} -5896 q^{-113} -2767 q^{-114} +1324 q^{-115} +3056 q^{-116} +2674 q^{-117} +411 q^{-118} -1296 q^{-119} -2219 q^{-120} -792 q^{-121} +705 q^{-122} +1051 q^{-123} +842 q^{-124} -56 q^{-125} -505 q^{-126} -861 q^{-127} -148 q^{-128} +389 q^{-129} +372 q^{-130} +286 q^{-131} -76 q^{-132} -173 q^{-133} -340 q^{-134} -25 q^{-135} +146 q^{-136} +101 q^{-137} +100 q^{-138} -27 q^{-139} -31 q^{-140} -111 q^{-141} +4 q^{-142} +39 q^{-143} +9 q^{-144} +27 q^{-145} -12 q^{-146} +3 q^{-147} -26 q^{-148} +7 q^{-149} +9 q^{-150} -6 q^{-151} +7 q^{-152} -5 q^{-153} +2 q^{-154} -3 q^{-155} +2 q^{-156} +2 q^{-157} -3 q^{-158} + q^{-159} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math>-q^{70}+3 q^{69}+q^{68}-5 q^{67}-3 q^{66}-3 q^{65}+7 q^{64}+5 q^{63}+3 q^{62}+17 q^{61}+7 q^{60}-20 q^{59}-35 q^{58}-50 q^{57}-13 q^{56}+25 q^{55}+38 q^{54}+116 q^{53}+116 q^{52}+52 q^{51}-56 q^{50}-230 q^{49}-261 q^{48}-203 q^{47}-114 q^{46}+197 q^{45}+457 q^{44}+582 q^{43}+535 q^{42}+16 q^{41}-471 q^{40}-865 q^{39}-1151 q^{38}-777 q^{37}-84 q^{36}+861 q^{35}+1815 q^{34}+1801 q^{33}+1174 q^{32}+25 q^{31}-1678 q^{30}-2620 q^{29}-2858 q^{28}-1894 q^{27}+485 q^{26}+2471 q^{25}+3902 q^{24}+4055 q^{23}+2110 q^{22}-453 q^{21}-3466 q^{20}-5587 q^{19}-4903 q^{18}-2842 q^{17}+747 q^{16}+4617 q^{15}+6277 q^{14}+6402 q^{13}+3683 q^{12}-1023 q^{11}-4680 q^{10}-7562 q^9-7618 q^8-4450 q^7-526 q^6+4785 q^5+8514 q^4+8854 q^3+7412 q^2+2202 q-4088-8969 q^{-1} -12639 q^{-2} -11119 q^{-3} -5366 q^{-4} +2518 q^{-5} +12335 q^{-6} +17733 q^{-7} +16934 q^{-8} +10085 q^{-9} -3917 q^{-10} -17504 q^{-11} -25955 q^{-12} -25579 q^{-13} -11961 q^{-14} +7902 q^{-15} +27206 q^{-16} +38331 q^{-17} +31816 q^{-18} +10973 q^{-19} -17614 q^{-20} -43212 q^{-21} -49882 q^{-22} -35180 q^{-23} -2576 q^{-24} +36261 q^{-25} +60095 q^{-26} +59166 q^{-27} +30374 q^{-28} -17217 q^{-29} -58822 q^{-30} -76777 q^{-31} -59759 q^{-32} -11146 q^{-33} +44334 q^{-34} +83425 q^{-35} +85352 q^{-36} +44119 q^{-37} -19072 q^{-38} -77567 q^{-39} -101889 q^{-40} -75846 q^{-41} -13346 q^{-42} +59692 q^{-43} +107305 q^{-44} +102017 q^{-45} +47803 q^{-46} -33171 q^{-47} -101364 q^{-48} -119374 q^{-49} -80075 q^{-50} +1679 q^{-51} +86002 q^{-52} +127346 q^{-53} +107015 q^{-54} +30731 q^{-55} -64144 q^{-56} -126624 q^{-57} -127154 q^{-58} -61142 q^{-59} +39081 q^{-60} +119166 q^{-61} +140265 q^{-62} +87514 q^{-63} -13413 q^{-64} -107274 q^{-65} -147457 q^{-66} -108925 q^{-67} -10396 q^{-68} +93350 q^{-69} +149735 q^{-70} +125223 q^{-71} +31168 q^{-72} -79427 q^{-73} -149185 q^{-74} -136940 q^{-75} -47606 q^{-76} +67430 q^{-77} +147319 q^{-78} +144941 q^{-79} +59757 q^{-80} -58609 q^{-81} -146290 q^{-82} -151040 q^{-83} -68037 q^{-84} +53918 q^{-85} +147755 q^{-86} +157082 q^{-87} +74037 q^{-88} -52635 q^{-89} -152675 q^{-90} -165536 q^{-91} -80528 q^{-92} +53128 q^{-93} +160931 q^{-94} +177729 q^{-95} +90155 q^{-96} -51946 q^{-97} -169922 q^{-98} -193615 q^{-99} -105553 q^{-100} +45129 q^{-101} +176076 q^{-102} +210911 q^{-103} +126678 q^{-104} -29931 q^{-105} -174293 q^{-106} -224712 q^{-107} -151314 q^{-108} +5176 q^{-109} +161036 q^{-110} +230137 q^{-111} +174279 q^{-112} +26051 q^{-113} -135260 q^{-114} -222260 q^{-115} -189501 q^{-116} -58771 q^{-117} +99457 q^{-118} +200049 q^{-119} +192166 q^{-120} +86054 q^{-121} -59395 q^{-122} -165784 q^{-123} -180156 q^{-124} -102449 q^{-125} +21856 q^{-126} +124846 q^{-127} +155432 q^{-128} +105699 q^{-129} +7300 q^{-130} -84200 q^{-131} -123006 q^{-132} -96593 q^{-133} -24998 q^{-134} +49352 q^{-135} +88772 q^{-136} +79299 q^{-137} +31753 q^{-138} -23758 q^{-139} -58207 q^{-140} -58780 q^{-141} -30032 q^{-142} +7861 q^{-143} +34258 q^{-144} +39237 q^{-145} +23717 q^{-146} +277 q^{-147} -17836 q^{-148} -23622 q^{-149} -16148 q^{-150} -2941 q^{-151} +8017 q^{-152} +12527 q^{-153} +9393 q^{-154} +2875 q^{-155} -2800 q^{-156} -5722 q^{-157} -4630 q^{-158} -1814 q^{-159} +661 q^{-160} +2141 q^{-161} +1611 q^{-162} +655 q^{-163} +75 q^{-164} -423 q^{-165} -165 q^{-166} -24 q^{-167} -122 q^{-168} -57 q^{-169} -378 q^{-170} -366 q^{-171} +17 q^{-172} +183 q^{-173} +479 q^{-174} +383 q^{-175} +13 q^{-176} -99 q^{-177} -332 q^{-178} -295 q^{-179} -78 q^{-180} +20 q^{-181} +237 q^{-182} +211 q^{-183} +25 q^{-184} -14 q^{-185} -106 q^{-186} -96 q^{-187} -20 q^{-188} -27 q^{-189} +63 q^{-190} +62 q^{-191} -2 q^{-192} +6 q^{-193} -29 q^{-194} -17 q^{-195} +7 q^{-196} -11 q^{-197} +12 q^{-198} +9 q^{-199} -6 q^{-200} +6 q^{-201} -6 q^{-202} -4 q^{-203} +5 q^{-204} -2 q^{-205} +3 q^{-206} -2 q^{-207} -2 q^{-208} +3 q^{-209} - q^{-210} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[18, 11, 19, 12], X[14, 7, 15, 8], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[18, 11, 19, 12], X[14, 7, 15, 8], |
|||
X[8, 3, 9, 4], X[4, 9, 5, 10], X[20, 13, 1, 14], X[10, 17, 11, 18], |
X[8, 3, 9, 4], X[4, 9, 5, 10], X[20, 13, 1, 14], X[10, 17, 11, 18], |
||
X[12, 19, 13, 20], X[2, 16, 3, 15]]</nowiki></ |
X[12, 19, 13, 20], X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, |
|||
-3, 9, -7]</nowiki></ |
-3, 9, -7]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 16, 14, 4, 18, 20, 2, 10, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 85]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_85_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 85]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 85]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 8 10 2 3 4 |
|||
11 + t - -- + -- - -- - 10 t + 8 t - 4 t + t |
11 + t - -- + -- - -- - 10 t + 8 t - 4 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 85]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z + 4 z + 4 z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 85]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 85]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 2 z + 4 z + 4 z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 85]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 5 7 9 9 8 7 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 85]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 85]], KnotSignature[Knot[10, 85]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{57, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 85]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 5 7 9 9 8 7 4 |
|||
3 - q + -- - -- + -- - -- + -- - -- + -- - - - q |
3 - q + -- - -- + -- - -- + -- - -- + -- - - - q |
||
8 7 6 5 4 3 2 q |
8 7 6 5 4 3 2 q |
||
q q q q q q q</nowiki></ |
q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 85]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -26 -24 -22 -20 -16 -14 3 2 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 85]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 85]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 -24 -22 -20 -16 -14 3 2 2 2 2 |
|||
1 - q + q - q + q - q + q - --- + --- + -- + -- - q |
1 - q + q - q + q - q + q - --- + --- + -- + -- - q |
||
12 10 6 4 |
12 10 6 4 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 85]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 9 2 2 4 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 85]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
a + a - a - 3 a z + 9 a z - 4 a z - 4 a z + 12 a z - |
|||
6 4 2 6 4 6 6 6 4 8 |
|||
4 a z - a z + 6 a z - a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 85]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 9 2 2 4 2 |
|||
-a + a + a - a z - 2 a z - 2 a z + a z - 7 a z - 14 a z - |
-a + a + a - a z - 2 a z - 2 a z + a z - 7 a z - 14 a z - |
||
Line 114: | Line 210: | ||
2 8 4 8 6 8 3 9 5 9 |
2 8 4 8 6 8 3 9 5 9 |
||
3 a z + 8 a z + 5 a z + 2 a z + 2 a z</nowiki></ |
3 a z + 8 a z + 5 a z + 2 a z + 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 85]], Vassiliev[3][Knot[10, 85]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -3}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 85]], Vassiliev[3][Knot[10, 85]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -3}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 85]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 5 1 2 1 3 2 4 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
||
Line 131: | Line 237: | ||
t 2 3 3 |
t 2 3 3 |
||
-- + 2 q t + q t |
-- + 2 q t + q t |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 85], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -25 3 2 5 12 8 8 24 21 9 |
|||
-11 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
|||
24 23 22 21 20 19 18 17 16 |
|||
q q q q q q q q q |
|||
40 32 17 54 31 29 57 20 36 47 6 35 |
|||
--- + --- + --- - --- + --- + --- - -- + -- + -- - -- + -- + -- - |
|||
15 14 13 12 11 10 9 8 7 6 5 4 |
|||
q q q q q q q q q q q q |
|||
30 5 25 2 3 4 5 |
|||
-- - -- + -- - 8 q + 10 q - q - 3 q + q |
|||
3 2 q |
|||
q q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 85's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,6,17,5 X18,11,19,12 X14,7,15,8 X8394 X4,9,5,10 X20,13,1,14 X10,17,11,18 X12,19,13,20 X2,16,3,15 |
Gauss code | 1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, -7 |
Dowker-Thistlethwaite code | 6 8 16 14 4 18 20 2 10 12 |
Conway Notation | [.4.20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 12}, {2, 6}, {8, 13}, {9, 7}, {10, 8}, {11, 9}, {4, 10}, {6, 11}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] |
[edit Notes on presentations of 10 85]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,6,17,5 X18,11,19,12 X14,7,15,8 X8394 X4,9,5,10 X20,13,1,14 X10,17,11,18 X12,19,13,20 X2,16,3,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 16 14 4 18 20 2 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.4.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 6}, {8, 13}, {9, 7}, {10, 8}, {11, 9}, {4, 10}, {6, 11}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 85. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|