10 90: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 90 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,8,-10,4,-1,2,-7,9,-8,5,-6,3,-4,7,-9,10,-3,6,-5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=90|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,8,-10,4,-1,2,-7,9,-8,5,-6,3,-4,7,-9,10,-3,6,-5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 72: Line 40:
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{18}-3 q^{17}+q^{16}+10 q^{15}-16 q^{14}-6 q^{13}+40 q^{12}-31 q^{11}-35 q^{10}+83 q^9-32 q^8-80 q^7+117 q^6-15 q^5-119 q^4+125 q^3+10 q^2-130 q+103+27 q^{-1} -104 q^{-2} +61 q^{-3} +26 q^{-4} -57 q^{-5} +24 q^{-6} +13 q^{-7} -19 q^{-8} +6 q^{-9} +3 q^{-10} -3 q^{-11} + q^{-12} </math> |

coloured_jones_3 = <math>q^{36}-3 q^{35}+q^{34}+5 q^{33}+2 q^{32}-16 q^{31}-8 q^{30}+32 q^{29}+29 q^{28}-51 q^{27}-69 q^{26}+57 q^{25}+136 q^{24}-46 q^{23}-211 q^{22}-5 q^{21}+290 q^{20}+88 q^{19}-348 q^{18}-201 q^{17}+379 q^{16}+325 q^{15}-372 q^{14}-455 q^{13}+343 q^{12}+564 q^{11}-281 q^{10}-663 q^9+210 q^8+734 q^7-129 q^6-773 q^5+41 q^4+778 q^3+45 q^2-741 q-122+663 q^{-1} +179 q^{-2} -551 q^{-3} -206 q^{-4} +418 q^{-5} +206 q^{-6} -293 q^{-7} -171 q^{-8} +180 q^{-9} +133 q^{-10} -111 q^{-11} -78 q^{-12} +53 q^{-13} +50 q^{-14} -32 q^{-15} -23 q^{-16} +16 q^{-17} +11 q^{-18} -9 q^{-19} -3 q^{-20} +2 q^{-21} +3 q^{-22} -3 q^{-23} + q^{-24} </math> |
{{Display Coloured Jones|J2=<math>q^{18}-3 q^{17}+q^{16}+10 q^{15}-16 q^{14}-6 q^{13}+40 q^{12}-31 q^{11}-35 q^{10}+83 q^9-32 q^8-80 q^7+117 q^6-15 q^5-119 q^4+125 q^3+10 q^2-130 q+103+27 q^{-1} -104 q^{-2} +61 q^{-3} +26 q^{-4} -57 q^{-5} +24 q^{-6} +13 q^{-7} -19 q^{-8} +6 q^{-9} +3 q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-3 q^{35}+q^{34}+5 q^{33}+2 q^{32}-16 q^{31}-8 q^{30}+32 q^{29}+29 q^{28}-51 q^{27}-69 q^{26}+57 q^{25}+136 q^{24}-46 q^{23}-211 q^{22}-5 q^{21}+290 q^{20}+88 q^{19}-348 q^{18}-201 q^{17}+379 q^{16}+325 q^{15}-372 q^{14}-455 q^{13}+343 q^{12}+564 q^{11}-281 q^{10}-663 q^9+210 q^8+734 q^7-129 q^6-773 q^5+41 q^4+778 q^3+45 q^2-741 q-122+663 q^{-1} +179 q^{-2} -551 q^{-3} -206 q^{-4} +418 q^{-5} +206 q^{-6} -293 q^{-7} -171 q^{-8} +180 q^{-9} +133 q^{-10} -111 q^{-11} -78 q^{-12} +53 q^{-13} +50 q^{-14} -32 q^{-15} -23 q^{-16} +16 q^{-17} +11 q^{-18} -9 q^{-19} -3 q^{-20} +2 q^{-21} +3 q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+2 q^{55}-19 q^{54}+4 q^{53}+35 q^{52}+4 q^{51}+9 q^{50}-100 q^{49}-44 q^{48}+107 q^{47}+106 q^{46}+139 q^{45}-258 q^{44}-303 q^{43}+24 q^{42}+277 q^{41}+653 q^{40}-180 q^{39}-715 q^{38}-550 q^{37}+59 q^{36}+1431 q^{35}+544 q^{34}-667 q^{33}-1430 q^{32}-1021 q^{31}+1742 q^{30}+1666 q^{29}+350 q^{28}-1826 q^{27}-2647 q^{26}+1059 q^{25}+2377 q^{24}+2013 q^{23}-1270 q^{22}-4010 q^{21}-312 q^{20}+2270 q^{19}+3581 q^{18}-81 q^{17}-4700 q^{16}-1746 q^{15}+1613 q^{14}+4679 q^{13}+1201 q^{12}-4819 q^{11}-2926 q^{10}+749 q^9+5270 q^8+2359 q^7-4432 q^6-3771 q^5-278 q^4+5219 q^3+3302 q^2-3401 q-3999-1400 q^{-1} +4240 q^{-2} +3678 q^{-3} -1816 q^{-4} -3272 q^{-5} -2144 q^{-6} +2519 q^{-7} +3096 q^{-8} -377 q^{-9} -1825 q^{-10} -1999 q^{-11} +910 q^{-12} +1824 q^{-13} +246 q^{-14} -539 q^{-15} -1196 q^{-16} +116 q^{-17} +701 q^{-18} +187 q^{-19} +22 q^{-20} -466 q^{-21} -23 q^{-22} +178 q^{-23} +20 q^{-24} +77 q^{-25} -130 q^{-26} +7 q^{-27} +41 q^{-28} -24 q^{-29} +30 q^{-30} -33 q^{-31} +8 q^{-32} +13 q^{-33} -11 q^{-34} +7 q^{-35} -7 q^{-36} +2 q^{-37} +3 q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-3 q^{89}+q^{88}+5 q^{87}-3 q^{86}-3 q^{85}-q^{84}-7 q^{83}+6 q^{82}+30 q^{81}+8 q^{80}-30 q^{79}-44 q^{78}-52 q^{77}+14 q^{76}+132 q^{75}+161 q^{74}+19 q^{73}-198 q^{72}-354 q^{71}-248 q^{70}+202 q^{69}+659 q^{68}+678 q^{67}+56 q^{66}-885 q^{65}-1374 q^{64}-763 q^{63}+775 q^{62}+2140 q^{61}+2020 q^{60}+2 q^{59}-2594 q^{58}-3601 q^{57}-1735 q^{56}+2171 q^{55}+5152 q^{54}+4286 q^{53}-503 q^{52}-5833 q^{51}-7236 q^{50}-2660 q^{49}+5107 q^{48}+9822 q^{47}+6861 q^{46}-2485 q^{45}-11155 q^{44}-11495 q^{43}-1916 q^{42}+10644 q^{41}+15609 q^{40}+7594 q^{39}-8061 q^{38}-18446 q^{37}-13710 q^{36}+3631 q^{35}+19514 q^{34}+19545 q^{33}+1990 q^{32}-18866 q^{31}-24318 q^{30}-8135 q^{29}+16689 q^{28}+27947 q^{27}+14115 q^{26}-13676 q^{25}-30288 q^{24}-19473 q^{23}+10172 q^{22}+31699 q^{21}+24135 q^{20}-6744 q^{19}-32431 q^{18}-28043 q^{17}+3442 q^{16}+32713 q^{15}+31439 q^{14}-255 q^{13}-32649 q^{12}-34415 q^{11}-2986 q^{10}+32037 q^9+36966 q^8+6548 q^7-30574 q^6-38961 q^5-10445 q^4+27920 q^3+39929 q^2+14566 q-23842-39416 q^{-1} -18465 q^{-2} +18448 q^{-3} +37032 q^{-4} +21460 q^{-5} -12178 q^{-6} -32682 q^{-7} -22927 q^{-8} +5847 q^{-9} +26701 q^{-10} +22458 q^{-11} -311 q^{-12} -19901 q^{-13} -20114 q^{-14} -3586 q^{-15} +13171 q^{-16} +16313 q^{-17} +5732 q^{-18} -7496 q^{-19} -12037 q^{-20} -5981 q^{-21} +3333 q^{-22} +7822 q^{-23} +5217 q^{-24} -790 q^{-25} -4605 q^{-26} -3751 q^{-27} -373 q^{-28} +2239 q^{-29} +2410 q^{-30} +711 q^{-31} -952 q^{-32} -1305 q^{-33} -589 q^{-34} +272 q^{-35} +626 q^{-36} +371 q^{-37} -42 q^{-38} -229 q^{-39} -196 q^{-40} -32 q^{-41} +93 q^{-42} +68 q^{-43} +10 q^{-44} -4 q^{-45} -21 q^{-46} -25 q^{-47} +20 q^{-48} +4 q^{-49} -13 q^{-50} +8 q^{-51} +5 q^{-52} -9 q^{-53} +5 q^{-54} +3 q^{-55} -7 q^{-56} +2 q^{-57} +3 q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{126}-3 q^{125}+q^{124}+5 q^{123}-3 q^{122}-3 q^{121}-6 q^{120}+11 q^{119}-5 q^{118}+q^{117}+33 q^{116}-11 q^{115}-30 q^{114}-59 q^{113}+13 q^{112}+5 q^{111}+48 q^{110}+188 q^{109}+66 q^{108}-78 q^{107}-326 q^{106}-227 q^{105}-236 q^{104}+61 q^{103}+752 q^{102}+815 q^{101}+530 q^{100}-525 q^{99}-1047 q^{98}-1842 q^{97}-1431 q^{96}+699 q^{95}+2489 q^{94}+3599 q^{93}+2096 q^{92}+28 q^{91}-4346 q^{90}-6743 q^{89}-4655 q^{88}+237 q^{87}+6841 q^{86}+9782 q^{85}+9804 q^{84}+662 q^{83}-10201 q^{82}-16362 q^{81}-14479 q^{80}-2649 q^{79}+11757 q^{78}+26139 q^{77}+22534 q^{76}+5933 q^{75}-16988 q^{74}-34124 q^{73}-33295 q^{72}-13902 q^{71}+23809 q^{70}+46402 q^{69}+46852 q^{68}+18206 q^{67}-25773 q^{66}-61525 q^{65}-66867 q^{64}-22705 q^{63}+32950 q^{62}+79896 q^{61}+81819 q^{60}+34263 q^{59}-43783 q^{58}-106330 q^{57}-98185 q^{56}-37368 q^{55}+60004 q^{54}+127146 q^{53}+123013 q^{52}+33696 q^{51}-88642 q^{50}-152642 q^{49}-135055 q^{48}-19963 q^{47}+114550 q^{46}+189733 q^{45}+136731 q^{44}-13264 q^{43}-151878 q^{42}-211104 q^{41}-123129 q^{40}+49348 q^{39}+205989 q^{38}+219738 q^{37}+82307 q^{36}-105328 q^{35}-242719 q^{34}-208320 q^{33}-32203 q^{32}+183269 q^{31}+264744 q^{30}+162109 q^{29}-46006 q^{28}-241959 q^{27}-261671 q^{26}-99959 q^{25}+149827 q^{24}+283267 q^{23}+216416 q^{22}+2714 q^{21}-231908 q^{20}-294186 q^{19}-148925 q^{18}+121756 q^{17}+293522 q^{16}+256837 q^{15}+41686 q^{14}-221716 q^{13}-320428 q^{12}-192793 q^{11}+91814 q^{10}+298416 q^9+295685 q^8+87821 q^7-197948 q^6-337805 q^5-242412 q^4+39952 q^3+278740 q^2+324994 q+150023-138342 q^{-1} -321569 q^{-2} -283807 q^{-3} -39051 q^{-4} +211280 q^{-5} +314459 q^{-6} +206845 q^{-7} -43312 q^{-8} -248797 q^{-9} -281236 q^{-10} -114816 q^{-11} +103697 q^{-12} +242732 q^{-13} +217374 q^{-14} +47526 q^{-15} -135261 q^{-16} -216162 q^{-17} -142272 q^{-18} +3646 q^{-19} +133411 q^{-20} +166740 q^{-21} +87514 q^{-22} -34037 q^{-23} -118629 q^{-24} -111009 q^{-25} -43989 q^{-26} +41095 q^{-27} +89014 q^{-28} +71913 q^{-29} +15195 q^{-30} -40685 q^{-31} -56681 q^{-32} -40723 q^{-33} -2598 q^{-34} +30328 q^{-35} +36299 q^{-36} +19757 q^{-37} -4920 q^{-38} -17781 q^{-39} -20186 q^{-40} -9482 q^{-41} +4922 q^{-42} +11596 q^{-43} +9742 q^{-44} +2510 q^{-45} -2360 q^{-46} -6198 q^{-47} -4929 q^{-48} -613 q^{-49} +2172 q^{-50} +2798 q^{-51} +1427 q^{-52} +626 q^{-53} -1162 q^{-54} -1498 q^{-55} -514 q^{-56} +149 q^{-57} +474 q^{-58} +285 q^{-59} +442 q^{-60} -102 q^{-61} -326 q^{-62} -103 q^{-63} -15 q^{-64} +38 q^{-65} -18 q^{-66} +135 q^{-67} +3 q^{-68} -64 q^{-69} +3 q^{-70} +2 q^{-71} +6 q^{-72} -29 q^{-73} +28 q^{-74} +5 q^{-75} -17 q^{-76} +7 q^{-77} + q^{-78} +3 q^{-79} -7 q^{-80} +2 q^{-81} +3 q^{-82} -3 q^{-83} + q^{-84} </math>|J7=<math>q^{168}-3 q^{167}+q^{166}+5 q^{165}-3 q^{164}-3 q^{163}-6 q^{162}+6 q^{161}+13 q^{160}-10 q^{159}+4 q^{158}+14 q^{157}-12 q^{156}-25 q^{155}-50 q^{154}-3 q^{153}+80 q^{152}+41 q^{151}+73 q^{150}+75 q^{149}-39 q^{148}-137 q^{147}-349 q^{146}-280 q^{145}+62 q^{144}+262 q^{143}+611 q^{142}+777 q^{141}+482 q^{140}-33 q^{139}-1197 q^{138}-1954 q^{137}-1637 q^{136}-841 q^{135}+1141 q^{134}+3156 q^{133}+4160 q^{132}+3903 q^{131}+627 q^{130}-3929 q^{129}-7439 q^{128}-9165 q^{127}-6025 q^{126}+921 q^{125}+9122 q^{124}+16600 q^{123}+16643 q^{122}+8562 q^{121}-5163 q^{120}-21616 q^{119}-30455 q^{118}-27134 q^{117}-10817 q^{116}+17023 q^{115}+41700 q^{114}+52255 q^{113}+41646 q^{112}+6061 q^{111}-38093 q^{110}-73835 q^{109}-84140 q^{108}-53476 q^{107}+6259 q^{106}+75098 q^{105}+124316 q^{104}+120307 q^{103}+61803 q^{102}-36089 q^{101}-137700 q^{100}-188091 q^{99}-162167 q^{98}-55908 q^{97}+98297 q^{96}+225794 q^{95}+270991 q^{94}+196626 q^{93}+13720 q^{92}-197282 q^{91}-350689 q^{90}-361566 q^{89}-196908 q^{88}+77351 q^{87}+356667 q^{86}+505217 q^{85}+425739 q^{84}+139974 q^{83}-253986 q^{82}-576901 q^{81}-653121 q^{80}-430915 q^{79}+30934 q^{78}+532543 q^{77}+821293 q^{76}+748904 q^{75}+296493 q^{74}-351335 q^{73}-880619 q^{72}-1035087 q^{71}-684996 q^{70}+41884 q^{69}+801119 q^{68}+1234285 q^{67}+1077796 q^{66}+361126 q^{65}-581315 q^{64}-1310135 q^{63}-1419250 q^{62}-806151 q^{61}+247201 q^{60}+1251602 q^{59}+1666695 q^{58}+1238912 q^{57}+159293 q^{56}-1072241 q^{55}-1801501 q^{54}-1616053 q^{53}-588314 q^{52}+805598 q^{51}+1825437 q^{50}+1909470 q^{49}+997097 q^{48}-490836 q^{47}-1759253 q^{46}-2113116 q^{45}-1354592 q^{44}+168796 q^{43}+1633267 q^{42}+2233769 q^{41}+1644804 q^{40}+131037 q^{39}-1478630 q^{38}-2291644 q^{37}-1867561 q^{36}-388246 q^{35}+1323942 q^{34}+2309291 q^{33}+2031422 q^{32}+596649 q^{31}-1187234 q^{30}-2309954 q^{29}-2154151 q^{28}-760431 q^{27}+1078614 q^{26}+2311809 q^{25}+2254664 q^{24}+892576 q^{23}-995948 q^{22}-2324969 q^{21}-2351935 q^{20}-1012902 q^{19}+927171 q^{18}+2350868 q^{17}+2459920 q^{16}+1142223 q^{15}-852161 q^{14}-2378137 q^{13}-2582437 q^{12}-1300059 q^{11}+744547 q^{10}+2385478 q^9+2712137 q^8+1495817 q^7-580254 q^6-2342637 q^5-2825972 q^4-1724804 q^3+342533 q^2+2218128 q+2890038+1964744 q^{-1} -32001 q^{-2} -1988955 q^{-3} -2865538 q^{-4} -2176687 q^{-5} -329195 q^{-6} +1649485 q^{-7} +2720281 q^{-8} +2314102 q^{-9} +699005 q^{-10} -1219352 q^{-11} -2441560 q^{-12} -2335101 q^{-13} -1022762 q^{-14} +742845 q^{-15} +2043268 q^{-16} +2215929 q^{-17} +1248347 q^{-18} -278917 q^{-19} -1566594 q^{-20} -1962250 q^{-21} -1341777 q^{-22} -112090 q^{-23} +1072105 q^{-24} +1607740 q^{-25} +1295785 q^{-26} +386653 q^{-27} -620831 q^{-28} -1206390 q^{-29} -1135216 q^{-30} -528988 q^{-31} +262448 q^{-32} +818064 q^{-33} +903270 q^{-34} +550088 q^{-35} -18644 q^{-36} -488230 q^{-37} -652137 q^{-38} -486290 q^{-39} -113670 q^{-40} +245319 q^{-41} +424422 q^{-42} +376722 q^{-43} +158567 q^{-44} -88826 q^{-45} -245886 q^{-46} -261194 q^{-47} -148954 q^{-48} +6301 q^{-49} +124257 q^{-50} +161838 q^{-51} +114092 q^{-52} +26878 q^{-53} -51605 q^{-54} -90157 q^{-55} -75935 q^{-56} -31887 q^{-57} +14988 q^{-58} +44849 q^{-59} +44695 q^{-60} +25310 q^{-61} +90 q^{-62} -19681 q^{-63} -23602 q^{-64} -16554 q^{-65} -4353 q^{-66} +7448 q^{-67} +11403 q^{-68} +9515 q^{-69} +4041 q^{-70} -2372 q^{-71} -4825 q^{-72} -4802 q^{-73} -2914 q^{-74} +356 q^{-75} +1946 q^{-76} +2429 q^{-77} +1637 q^{-78} -66 q^{-79} -605 q^{-80} -899 q^{-81} -889 q^{-82} -210 q^{-83} +145 q^{-84} +496 q^{-85} +444 q^{-86} -26 q^{-87} -28 q^{-88} -73 q^{-89} -168 q^{-90} -64 q^{-91} -51 q^{-92} +87 q^{-93} +105 q^{-94} -41 q^{-95} - q^{-96} +8 q^{-97} -12 q^{-98} -2 q^{-99} -27 q^{-100} +12 q^{-101} +25 q^{-102} -17 q^{-103} - q^{-104} +3 q^{-105} + q^{-106} +3 q^{-107} -7 q^{-108} +2 q^{-109} +3 q^{-110} -3 q^{-111} + q^{-112} </math>}}
coloured_jones_4 = <math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+2 q^{55}-19 q^{54}+4 q^{53}+35 q^{52}+4 q^{51}+9 q^{50}-100 q^{49}-44 q^{48}+107 q^{47}+106 q^{46}+139 q^{45}-258 q^{44}-303 q^{43}+24 q^{42}+277 q^{41}+653 q^{40}-180 q^{39}-715 q^{38}-550 q^{37}+59 q^{36}+1431 q^{35}+544 q^{34}-667 q^{33}-1430 q^{32}-1021 q^{31}+1742 q^{30}+1666 q^{29}+350 q^{28}-1826 q^{27}-2647 q^{26}+1059 q^{25}+2377 q^{24}+2013 q^{23}-1270 q^{22}-4010 q^{21}-312 q^{20}+2270 q^{19}+3581 q^{18}-81 q^{17}-4700 q^{16}-1746 q^{15}+1613 q^{14}+4679 q^{13}+1201 q^{12}-4819 q^{11}-2926 q^{10}+749 q^9+5270 q^8+2359 q^7-4432 q^6-3771 q^5-278 q^4+5219 q^3+3302 q^2-3401 q-3999-1400 q^{-1} +4240 q^{-2} +3678 q^{-3} -1816 q^{-4} -3272 q^{-5} -2144 q^{-6} +2519 q^{-7} +3096 q^{-8} -377 q^{-9} -1825 q^{-10} -1999 q^{-11} +910 q^{-12} +1824 q^{-13} +246 q^{-14} -539 q^{-15} -1196 q^{-16} +116 q^{-17} +701 q^{-18} +187 q^{-19} +22 q^{-20} -466 q^{-21} -23 q^{-22} +178 q^{-23} +20 q^{-24} +77 q^{-25} -130 q^{-26} +7 q^{-27} +41 q^{-28} -24 q^{-29} +30 q^{-30} -33 q^{-31} +8 q^{-32} +13 q^{-33} -11 q^{-34} +7 q^{-35} -7 q^{-36} +2 q^{-37} +3 q^{-38} -3 q^{-39} + q^{-40} </math> |

coloured_jones_5 = <math>q^{90}-3 q^{89}+q^{88}+5 q^{87}-3 q^{86}-3 q^{85}-q^{84}-7 q^{83}+6 q^{82}+30 q^{81}+8 q^{80}-30 q^{79}-44 q^{78}-52 q^{77}+14 q^{76}+132 q^{75}+161 q^{74}+19 q^{73}-198 q^{72}-354 q^{71}-248 q^{70}+202 q^{69}+659 q^{68}+678 q^{67}+56 q^{66}-885 q^{65}-1374 q^{64}-763 q^{63}+775 q^{62}+2140 q^{61}+2020 q^{60}+2 q^{59}-2594 q^{58}-3601 q^{57}-1735 q^{56}+2171 q^{55}+5152 q^{54}+4286 q^{53}-503 q^{52}-5833 q^{51}-7236 q^{50}-2660 q^{49}+5107 q^{48}+9822 q^{47}+6861 q^{46}-2485 q^{45}-11155 q^{44}-11495 q^{43}-1916 q^{42}+10644 q^{41}+15609 q^{40}+7594 q^{39}-8061 q^{38}-18446 q^{37}-13710 q^{36}+3631 q^{35}+19514 q^{34}+19545 q^{33}+1990 q^{32}-18866 q^{31}-24318 q^{30}-8135 q^{29}+16689 q^{28}+27947 q^{27}+14115 q^{26}-13676 q^{25}-30288 q^{24}-19473 q^{23}+10172 q^{22}+31699 q^{21}+24135 q^{20}-6744 q^{19}-32431 q^{18}-28043 q^{17}+3442 q^{16}+32713 q^{15}+31439 q^{14}-255 q^{13}-32649 q^{12}-34415 q^{11}-2986 q^{10}+32037 q^9+36966 q^8+6548 q^7-30574 q^6-38961 q^5-10445 q^4+27920 q^3+39929 q^2+14566 q-23842-39416 q^{-1} -18465 q^{-2} +18448 q^{-3} +37032 q^{-4} +21460 q^{-5} -12178 q^{-6} -32682 q^{-7} -22927 q^{-8} +5847 q^{-9} +26701 q^{-10} +22458 q^{-11} -311 q^{-12} -19901 q^{-13} -20114 q^{-14} -3586 q^{-15} +13171 q^{-16} +16313 q^{-17} +5732 q^{-18} -7496 q^{-19} -12037 q^{-20} -5981 q^{-21} +3333 q^{-22} +7822 q^{-23} +5217 q^{-24} -790 q^{-25} -4605 q^{-26} -3751 q^{-27} -373 q^{-28} +2239 q^{-29} +2410 q^{-30} +711 q^{-31} -952 q^{-32} -1305 q^{-33} -589 q^{-34} +272 q^{-35} +626 q^{-36} +371 q^{-37} -42 q^{-38} -229 q^{-39} -196 q^{-40} -32 q^{-41} +93 q^{-42} +68 q^{-43} +10 q^{-44} -4 q^{-45} -21 q^{-46} -25 q^{-47} +20 q^{-48} +4 q^{-49} -13 q^{-50} +8 q^{-51} +5 q^{-52} -9 q^{-53} +5 q^{-54} +3 q^{-55} -7 q^{-56} +2 q^{-57} +3 q^{-58} -3 q^{-59} + q^{-60} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{126}-3 q^{125}+q^{124}+5 q^{123}-3 q^{122}-3 q^{121}-6 q^{120}+11 q^{119}-5 q^{118}+q^{117}+33 q^{116}-11 q^{115}-30 q^{114}-59 q^{113}+13 q^{112}+5 q^{111}+48 q^{110}+188 q^{109}+66 q^{108}-78 q^{107}-326 q^{106}-227 q^{105}-236 q^{104}+61 q^{103}+752 q^{102}+815 q^{101}+530 q^{100}-525 q^{99}-1047 q^{98}-1842 q^{97}-1431 q^{96}+699 q^{95}+2489 q^{94}+3599 q^{93}+2096 q^{92}+28 q^{91}-4346 q^{90}-6743 q^{89}-4655 q^{88}+237 q^{87}+6841 q^{86}+9782 q^{85}+9804 q^{84}+662 q^{83}-10201 q^{82}-16362 q^{81}-14479 q^{80}-2649 q^{79}+11757 q^{78}+26139 q^{77}+22534 q^{76}+5933 q^{75}-16988 q^{74}-34124 q^{73}-33295 q^{72}-13902 q^{71}+23809 q^{70}+46402 q^{69}+46852 q^{68}+18206 q^{67}-25773 q^{66}-61525 q^{65}-66867 q^{64}-22705 q^{63}+32950 q^{62}+79896 q^{61}+81819 q^{60}+34263 q^{59}-43783 q^{58}-106330 q^{57}-98185 q^{56}-37368 q^{55}+60004 q^{54}+127146 q^{53}+123013 q^{52}+33696 q^{51}-88642 q^{50}-152642 q^{49}-135055 q^{48}-19963 q^{47}+114550 q^{46}+189733 q^{45}+136731 q^{44}-13264 q^{43}-151878 q^{42}-211104 q^{41}-123129 q^{40}+49348 q^{39}+205989 q^{38}+219738 q^{37}+82307 q^{36}-105328 q^{35}-242719 q^{34}-208320 q^{33}-32203 q^{32}+183269 q^{31}+264744 q^{30}+162109 q^{29}-46006 q^{28}-241959 q^{27}-261671 q^{26}-99959 q^{25}+149827 q^{24}+283267 q^{23}+216416 q^{22}+2714 q^{21}-231908 q^{20}-294186 q^{19}-148925 q^{18}+121756 q^{17}+293522 q^{16}+256837 q^{15}+41686 q^{14}-221716 q^{13}-320428 q^{12}-192793 q^{11}+91814 q^{10}+298416 q^9+295685 q^8+87821 q^7-197948 q^6-337805 q^5-242412 q^4+39952 q^3+278740 q^2+324994 q+150023-138342 q^{-1} -321569 q^{-2} -283807 q^{-3} -39051 q^{-4} +211280 q^{-5} +314459 q^{-6} +206845 q^{-7} -43312 q^{-8} -248797 q^{-9} -281236 q^{-10} -114816 q^{-11} +103697 q^{-12} +242732 q^{-13} +217374 q^{-14} +47526 q^{-15} -135261 q^{-16} -216162 q^{-17} -142272 q^{-18} +3646 q^{-19} +133411 q^{-20} +166740 q^{-21} +87514 q^{-22} -34037 q^{-23} -118629 q^{-24} -111009 q^{-25} -43989 q^{-26} +41095 q^{-27} +89014 q^{-28} +71913 q^{-29} +15195 q^{-30} -40685 q^{-31} -56681 q^{-32} -40723 q^{-33} -2598 q^{-34} +30328 q^{-35} +36299 q^{-36} +19757 q^{-37} -4920 q^{-38} -17781 q^{-39} -20186 q^{-40} -9482 q^{-41} +4922 q^{-42} +11596 q^{-43} +9742 q^{-44} +2510 q^{-45} -2360 q^{-46} -6198 q^{-47} -4929 q^{-48} -613 q^{-49} +2172 q^{-50} +2798 q^{-51} +1427 q^{-52} +626 q^{-53} -1162 q^{-54} -1498 q^{-55} -514 q^{-56} +149 q^{-57} +474 q^{-58} +285 q^{-59} +442 q^{-60} -102 q^{-61} -326 q^{-62} -103 q^{-63} -15 q^{-64} +38 q^{-65} -18 q^{-66} +135 q^{-67} +3 q^{-68} -64 q^{-69} +3 q^{-70} +2 q^{-71} +6 q^{-72} -29 q^{-73} +28 q^{-74} +5 q^{-75} -17 q^{-76} +7 q^{-77} + q^{-78} +3 q^{-79} -7 q^{-80} +2 q^{-81} +3 q^{-82} -3 q^{-83} + q^{-84} </math> |

coloured_jones_7 = <math>q^{168}-3 q^{167}+q^{166}+5 q^{165}-3 q^{164}-3 q^{163}-6 q^{162}+6 q^{161}+13 q^{160}-10 q^{159}+4 q^{158}+14 q^{157}-12 q^{156}-25 q^{155}-50 q^{154}-3 q^{153}+80 q^{152}+41 q^{151}+73 q^{150}+75 q^{149}-39 q^{148}-137 q^{147}-349 q^{146}-280 q^{145}+62 q^{144}+262 q^{143}+611 q^{142}+777 q^{141}+482 q^{140}-33 q^{139}-1197 q^{138}-1954 q^{137}-1637 q^{136}-841 q^{135}+1141 q^{134}+3156 q^{133}+4160 q^{132}+3903 q^{131}+627 q^{130}-3929 q^{129}-7439 q^{128}-9165 q^{127}-6025 q^{126}+921 q^{125}+9122 q^{124}+16600 q^{123}+16643 q^{122}+8562 q^{121}-5163 q^{120}-21616 q^{119}-30455 q^{118}-27134 q^{117}-10817 q^{116}+17023 q^{115}+41700 q^{114}+52255 q^{113}+41646 q^{112}+6061 q^{111}-38093 q^{110}-73835 q^{109}-84140 q^{108}-53476 q^{107}+6259 q^{106}+75098 q^{105}+124316 q^{104}+120307 q^{103}+61803 q^{102}-36089 q^{101}-137700 q^{100}-188091 q^{99}-162167 q^{98}-55908 q^{97}+98297 q^{96}+225794 q^{95}+270991 q^{94}+196626 q^{93}+13720 q^{92}-197282 q^{91}-350689 q^{90}-361566 q^{89}-196908 q^{88}+77351 q^{87}+356667 q^{86}+505217 q^{85}+425739 q^{84}+139974 q^{83}-253986 q^{82}-576901 q^{81}-653121 q^{80}-430915 q^{79}+30934 q^{78}+532543 q^{77}+821293 q^{76}+748904 q^{75}+296493 q^{74}-351335 q^{73}-880619 q^{72}-1035087 q^{71}-684996 q^{70}+41884 q^{69}+801119 q^{68}+1234285 q^{67}+1077796 q^{66}+361126 q^{65}-581315 q^{64}-1310135 q^{63}-1419250 q^{62}-806151 q^{61}+247201 q^{60}+1251602 q^{59}+1666695 q^{58}+1238912 q^{57}+159293 q^{56}-1072241 q^{55}-1801501 q^{54}-1616053 q^{53}-588314 q^{52}+805598 q^{51}+1825437 q^{50}+1909470 q^{49}+997097 q^{48}-490836 q^{47}-1759253 q^{46}-2113116 q^{45}-1354592 q^{44}+168796 q^{43}+1633267 q^{42}+2233769 q^{41}+1644804 q^{40}+131037 q^{39}-1478630 q^{38}-2291644 q^{37}-1867561 q^{36}-388246 q^{35}+1323942 q^{34}+2309291 q^{33}+2031422 q^{32}+596649 q^{31}-1187234 q^{30}-2309954 q^{29}-2154151 q^{28}-760431 q^{27}+1078614 q^{26}+2311809 q^{25}+2254664 q^{24}+892576 q^{23}-995948 q^{22}-2324969 q^{21}-2351935 q^{20}-1012902 q^{19}+927171 q^{18}+2350868 q^{17}+2459920 q^{16}+1142223 q^{15}-852161 q^{14}-2378137 q^{13}-2582437 q^{12}-1300059 q^{11}+744547 q^{10}+2385478 q^9+2712137 q^8+1495817 q^7-580254 q^6-2342637 q^5-2825972 q^4-1724804 q^3+342533 q^2+2218128 q+2890038+1964744 q^{-1} -32001 q^{-2} -1988955 q^{-3} -2865538 q^{-4} -2176687 q^{-5} -329195 q^{-6} +1649485 q^{-7} +2720281 q^{-8} +2314102 q^{-9} +699005 q^{-10} -1219352 q^{-11} -2441560 q^{-12} -2335101 q^{-13} -1022762 q^{-14} +742845 q^{-15} +2043268 q^{-16} +2215929 q^{-17} +1248347 q^{-18} -278917 q^{-19} -1566594 q^{-20} -1962250 q^{-21} -1341777 q^{-22} -112090 q^{-23} +1072105 q^{-24} +1607740 q^{-25} +1295785 q^{-26} +386653 q^{-27} -620831 q^{-28} -1206390 q^{-29} -1135216 q^{-30} -528988 q^{-31} +262448 q^{-32} +818064 q^{-33} +903270 q^{-34} +550088 q^{-35} -18644 q^{-36} -488230 q^{-37} -652137 q^{-38} -486290 q^{-39} -113670 q^{-40} +245319 q^{-41} +424422 q^{-42} +376722 q^{-43} +158567 q^{-44} -88826 q^{-45} -245886 q^{-46} -261194 q^{-47} -148954 q^{-48} +6301 q^{-49} +124257 q^{-50} +161838 q^{-51} +114092 q^{-52} +26878 q^{-53} -51605 q^{-54} -90157 q^{-55} -75935 q^{-56} -31887 q^{-57} +14988 q^{-58} +44849 q^{-59} +44695 q^{-60} +25310 q^{-61} +90 q^{-62} -19681 q^{-63} -23602 q^{-64} -16554 q^{-65} -4353 q^{-66} +7448 q^{-67} +11403 q^{-68} +9515 q^{-69} +4041 q^{-70} -2372 q^{-71} -4825 q^{-72} -4802 q^{-73} -2914 q^{-74} +356 q^{-75} +1946 q^{-76} +2429 q^{-77} +1637 q^{-78} -66 q^{-79} -605 q^{-80} -899 q^{-81} -889 q^{-82} -210 q^{-83} +145 q^{-84} +496 q^{-85} +444 q^{-86} -26 q^{-87} -28 q^{-88} -73 q^{-89} -168 q^{-90} -64 q^{-91} -51 q^{-92} +87 q^{-93} +105 q^{-94} -41 q^{-95} - q^{-96} +8 q^{-97} -12 q^{-98} -2 q^{-99} -27 q^{-100} +12 q^{-101} +25 q^{-102} -17 q^{-103} - q^{-104} +3 q^{-105} + q^{-106} +3 q^{-107} -7 q^{-108} +2 q^{-109} +3 q^{-110} -3 q^{-111} + q^{-112} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 90]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[2, 8, 3, 7], X[18, 14, 19, 13], X[14, 5, 15, 6],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 90]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[2, 8, 3, 7], X[18, 14, 19, 13], X[14, 5, 15, 6],
X[20, 12, 1, 11], X[12, 20, 13, 19], X[8, 15, 9, 16],
X[20, 12, 1, 11], X[12, 20, 13, 19], X[8, 15, 9, 16],
X[10, 4, 11, 3], X[16, 9, 17, 10], X[4, 17, 5, 18]]</nowiki></pre></td></tr>
X[10, 4, 11, 3], X[16, 9, 17, 10], X[4, 17, 5, 18]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 90]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -2, 8, -10, 4, -1, 2, -7, 9, -8, 5, -6, 3, -4, 7, -9, 10,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 90]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -2, 8, -10, 4, -1, 2, -7, 9, -8, 5, -6, 3, -4, 7, -9, 10,
-3, 6, -5]</nowiki></pre></td></tr>
-3, 6, -5]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 90]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 14, 2, 16, 20, 18, 8, 4, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 90]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 90]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, 3, -2, -1, 3, 2, 2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 2, 16, 20, 18, 8, 4, 12]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 90]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 90]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, 2, 3, -2, -1, 3, 2, 2}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 90]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_90_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 90]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 90]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 17 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 90]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 90]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_90_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 90]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 90]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 17 2 3
23 - -- + -- - -- - 17 t + 8 t - 2 t
23 - -- + -- - -- - 17 t + 8 t - 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 90]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - 3 z - 4 z - 2 z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 90]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 90]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 - 3 z - 4 z - 2 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 90]], KnotSignature[Knot[10, 90]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{77, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 90]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 7 10 2 3 4 5 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 90]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 90]], KnotSignature[Knot[10, 90]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{77, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 90]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 7 10 2 3 4 5 6
12 + q - -- + -- - -- - 13 q + 12 q - 9 q + 6 q - 3 q + q
12 + q - -- + -- - -- - 13 q + 12 q - 9 q + 6 q - 3 q + q
3 2 q
3 2 q
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 90]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 90]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 2 2 2 2 6 8 10 12 14
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 90]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 90]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -10 2 2 2 2 6 8 10 12 14
-3 + q - q + -- + -- - -- + -- - q + 3 q - 2 q + q + q -
-3 + q - q + -- + -- - -- + -- - q + 3 q - 2 q + q + q -
8 6 4 2
8 6 4 2
Line 146: Line 180:
16 18
16 18
q + q</nowiki></pre></td></tr>
q + q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 90]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 90]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4
-4 2 2 2 z 3 z 2 2 4 z 3 z
-4 2 2 2 z 3 z 2 2 4 z 3 z
-2 + a + 2 a - 4 z + ---- - ---- + 2 a z - 3 z + -- - ---- +
-2 + a + 2 a - 4 z + ---- - ---- + 2 a z - 3 z + -- - ---- +
Line 159: Line 197:
a z - z - --
a z - z - --
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 90]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 90]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-4 2 z z 2 z 2 2 z 4 z 5 z
-4 2 z z 2 z 2 2 z 4 z 5 z
-2 + a - 2 a - -- - -- - --- - 2 a z + 8 z + ---- - ---- - ---- +
-2 + a - 2 a - -- - -- - --- - 2 a z + 8 z + ---- - ---- - ---- +
Line 190: Line 232:
---- + 7 a z + 5 z + ---- + ---- + ---- + ----
---- + 7 a z + 5 z + ---- + ---- + ---- + ----
a 4 2 3 a
a 4 2 3 a
a a a</nowiki></pre></td></tr>
a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 90]], Vassiliev[3][Knot[10, 90]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 90]], Vassiliev[3][Knot[10, 90]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 90]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 5 2 5 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 90]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7 1 2 1 5 2 5 5
- + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t +
- + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q 9 4 7 3 5 3 5 2 3 2 3 q t
Line 205: Line 255:
9 5 11 5 13 6
9 5 11 5 13 6
q t + 2 q t + q t</nowiki></pre></td></tr>
q t + 2 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 90], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 3 6 19 13 24 57 26 61 104 27
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 90], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 3 3 6 19 13 24 57 26 61 104 27
103 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- -
103 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - --- + -- -
11 10 9 8 7 6 5 4 3 2 q
11 10 9 8 7 6 5 4 3 2 q
Line 220: Line 274:
17 18
17 18
3 q + q</nowiki></pre></td></tr>
3 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:00, 1 September 2005

10 89.gif

10_89

10 91.gif

10_91

10 90.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 90's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 90 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X2837 X18,14,19,13 X14,5,15,6 X20,12,1,11 X12,20,13,19 X8,15,9,16 X10,4,11,3 X16,9,17,10 X4,17,5,18
Gauss code 1, -2, 8, -10, 4, -1, 2, -7, 9, -8, 5, -6, 3, -4, 7, -9, 10, -3, 6, -5
Dowker-Thistlethwaite code 6 10 14 2 16 20 18 8 4 12
Conway Notation [.3.2.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif

Length is 11, width is 4,

Braid index is 4

10 90 ML.gif 10 90 AP.gif
[{7, 12}, {2, 11}, {12, 8}, {4, 1}, {3, 5}, {6, 4}, {5, 7}, {9, 6}, {8, 2}, {10, 3}, {11, 9}, {1, 10}]

[edit Notes on presentations of 10 90]


Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-7]
Hyperbolic Volume 13.8661
A-Polynomial See Data:10 90/A-polynomial

[edit Notes for 10 90's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 90's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 77, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 90. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
13          11
11         2 -2
9        41 3
7       52  -3
5      74   3
3     65    -1
1    67     -1
-1   57      2
-3  25       -3
-5 15        4
-7 2         -2
-91          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials