10 93: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 93 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,6,-7,2,-1,3,-9,5,-6,7,-8,4,-5,10,-2,8,-4,9,-3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=93|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,6,-7,2,-1,3,-9,5,-6,7,-8,4,-5,10,-2,8,-4,9,-3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
Line 73: Line 40:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{13}-3 q^{12}-q^{11}+11 q^{10}-9 q^9-14 q^8+31 q^7-6 q^6-42 q^5+48 q^4+11 q^3-71 q^2+52 q+35-88 q^{-1} +41 q^{-2} +54 q^{-3} -85 q^{-4} +21 q^{-5} +57 q^{-6} -63 q^{-7} +7 q^{-8} +39 q^{-9} -35 q^{-10} +4 q^{-11} +16 q^{-12} -14 q^{-13} +3 q^{-14} +3 q^{-15} -3 q^{-16} + q^{-17} </math> |

coloured_jones_3 = <math>-q^{27}+3 q^{26}+q^{25}-5 q^{24}-9 q^{23}+9 q^{22}+23 q^{21}-6 q^{20}-43 q^{19}-11 q^{18}+64 q^{17}+44 q^{16}-74 q^{15}-91 q^{14}+66 q^{13}+138 q^{12}-31 q^{11}-183 q^{10}-15 q^9+202 q^8+80 q^7-209 q^6-137 q^5+190 q^4+196 q^3-162 q^2-240 q+117+282 q^{-1} -72 q^{-2} -304 q^{-3} +9 q^{-4} +326 q^{-5} +44 q^{-6} -318 q^{-7} -106 q^{-8} +303 q^{-9} +142 q^{-10} -253 q^{-11} -172 q^{-12} +205 q^{-13} +161 q^{-14} -140 q^{-15} -139 q^{-16} +93 q^{-17} +97 q^{-18} -55 q^{-19} -58 q^{-20} +32 q^{-21} +29 q^{-22} -21 q^{-23} -10 q^{-24} +13 q^{-25} + q^{-26} -7 q^{-27} +2 q^{-28} +2 q^{-29} -3 q^{-31} +3 q^{-32} - q^{-33} </math> |
{{Display Coloured Jones|J2=<math>q^{13}-3 q^{12}-q^{11}+11 q^{10}-9 q^9-14 q^8+31 q^7-6 q^6-42 q^5+48 q^4+11 q^3-71 q^2+52 q+35-88 q^{-1} +41 q^{-2} +54 q^{-3} -85 q^{-4} +21 q^{-5} +57 q^{-6} -63 q^{-7} +7 q^{-8} +39 q^{-9} -35 q^{-10} +4 q^{-11} +16 q^{-12} -14 q^{-13} +3 q^{-14} +3 q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>-q^{27}+3 q^{26}+q^{25}-5 q^{24}-9 q^{23}+9 q^{22}+23 q^{21}-6 q^{20}-43 q^{19}-11 q^{18}+64 q^{17}+44 q^{16}-74 q^{15}-91 q^{14}+66 q^{13}+138 q^{12}-31 q^{11}-183 q^{10}-15 q^9+202 q^8+80 q^7-209 q^6-137 q^5+190 q^4+196 q^3-162 q^2-240 q+117+282 q^{-1} -72 q^{-2} -304 q^{-3} +9 q^{-4} +326 q^{-5} +44 q^{-6} -318 q^{-7} -106 q^{-8} +303 q^{-9} +142 q^{-10} -253 q^{-11} -172 q^{-12} +205 q^{-13} +161 q^{-14} -140 q^{-15} -139 q^{-16} +93 q^{-17} +97 q^{-18} -55 q^{-19} -58 q^{-20} +32 q^{-21} +29 q^{-22} -21 q^{-23} -10 q^{-24} +13 q^{-25} + q^{-26} -7 q^{-27} +2 q^{-28} +2 q^{-29} -3 q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{46}-3 q^{45}-q^{44}+5 q^{43}+3 q^{42}+9 q^{41}-19 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+74 q^{36}-15 q^{35}-77 q^{34}-75 q^{33}-40 q^{32}+200 q^{31}+121 q^{30}-20 q^{29}-199 q^{28}-323 q^{27}+164 q^{26}+297 q^{25}+316 q^{24}-59 q^{23}-655 q^{22}-203 q^{21}+124 q^{20}+681 q^{19}+489 q^{18}-593 q^{17}-576 q^{16}-505 q^{15}+601 q^{14}+1055 q^{13}-49 q^{12}-489 q^{11}-1177 q^{10}+26 q^9+1191 q^8+584 q^7+70 q^6-1488 q^5-682 q^4+889 q^3+990 q^2+776 q-1447-1264 q^{-1} +403 q^{-2} +1197 q^{-3} +1432 q^{-4} -1241 q^{-5} -1742 q^{-6} -149 q^{-7} +1310 q^{-8} +2042 q^{-9} -885 q^{-10} -2102 q^{-11} -796 q^{-12} +1195 q^{-13} +2511 q^{-14} -277 q^{-15} -2092 q^{-16} -1383 q^{-17} +688 q^{-18} +2489 q^{-19} +389 q^{-20} -1515 q^{-21} -1501 q^{-22} +10 q^{-23} +1824 q^{-24} +673 q^{-25} -697 q^{-26} -1042 q^{-27} -348 q^{-28} +940 q^{-29} +469 q^{-30} -164 q^{-31} -439 q^{-32} -293 q^{-33} +353 q^{-34} +156 q^{-35} -10 q^{-36} -95 q^{-37} -127 q^{-38} +115 q^{-39} +8 q^{-40} - q^{-41} + q^{-42} -40 q^{-43} +39 q^{-44} -12 q^{-45} -3 q^{-46} +8 q^{-47} -11 q^{-48} +10 q^{-49} -5 q^{-50} +3 q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>-q^{70}+3 q^{69}+q^{68}-5 q^{67}-3 q^{66}-3 q^{65}+q^{64}+17 q^{63}+24 q^{62}-6 q^{61}-31 q^{60}-48 q^{59}-41 q^{58}+27 q^{57}+115 q^{56}+123 q^{55}+22 q^{54}-129 q^{53}-253 q^{52}-207 q^{51}+62 q^{50}+371 q^{49}+463 q^{48}+202 q^{47}-307 q^{46}-740 q^{45}-677 q^{44}-23 q^{43}+812 q^{42}+1197 q^{41}+708 q^{40}-465 q^{39}-1538 q^{38}-1586 q^{37}-376 q^{36}+1365 q^{35}+2340 q^{34}+1614 q^{33}-514 q^{32}-2568 q^{31}-2908 q^{30}-978 q^{29}+2015 q^{28}+3782 q^{27}+2756 q^{26}-556 q^{25}-3846 q^{24}-4437 q^{23}-1490 q^{22}+2941 q^{21}+5416 q^{20}+3786 q^{19}-1078 q^{18}-5542 q^{17}-5808 q^{16}-1309 q^{15}+4603 q^{14}+7185 q^{13}+3939 q^{12}-2894 q^{11}-7739 q^{10}-6314 q^9+628 q^8+7503 q^7+8244 q^6+1777 q^5-6628 q^4-9612 q^3-4124 q^2+5447 q+10507+6142 q^{-1} -4104 q^{-2} -11067 q^{-3} -7972 q^{-4} +2905 q^{-5} +11522 q^{-6} +9512 q^{-7} -1745 q^{-8} -11949 q^{-9} -11120 q^{-10} +683 q^{-11} +12452 q^{-12} +12692 q^{-13} +580 q^{-14} -12805 q^{-15} -14452 q^{-16} -2098 q^{-17} +12845 q^{-18} +16041 q^{-19} +4053 q^{-20} -12189 q^{-21} -17348 q^{-22} -6227 q^{-23} +10751 q^{-24} +17753 q^{-25} +8442 q^{-26} -8438 q^{-27} -17228 q^{-28} -10111 q^{-29} +5669 q^{-30} +15431 q^{-31} +10948 q^{-32} -2759 q^{-33} -12830 q^{-34} -10704 q^{-35} +387 q^{-36} +9698 q^{-37} +9464 q^{-38} +1260 q^{-39} -6671 q^{-40} -7605 q^{-41} -2009 q^{-42} +4140 q^{-43} +5542 q^{-44} +2039 q^{-45} -2296 q^{-46} -3654 q^{-47} -1678 q^{-48} +1134 q^{-49} +2213 q^{-50} +1149 q^{-51} -505 q^{-52} -1202 q^{-53} -687 q^{-54} +197 q^{-55} +596 q^{-56} +363 q^{-57} -76 q^{-58} -278 q^{-59} -152 q^{-60} +38 q^{-61} +101 q^{-62} +54 q^{-63} -6 q^{-64} -46 q^{-65} -19 q^{-66} +23 q^{-67} +5 q^{-68} -8 q^{-69} +7 q^{-70} -4 q^{-71} -6 q^{-72} +10 q^{-73} - q^{-74} -7 q^{-75} +5 q^{-76} -3 q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{99}-3 q^{98}-q^{97}+5 q^{96}+3 q^{95}+3 q^{94}-7 q^{93}+q^{92}-20 q^{91}-22 q^{90}+18 q^{89}+32 q^{88}+54 q^{87}+17 q^{86}+25 q^{85}-87 q^{84}-163 q^{83}-103 q^{82}-13 q^{81}+173 q^{80}+231 q^{79}+399 q^{78}+107 q^{77}-285 q^{76}-558 q^{75}-671 q^{74}-345 q^{73}+78 q^{72}+1123 q^{71}+1287 q^{70}+906 q^{69}-75 q^{68}-1313 q^{67}-2108 q^{66}-2284 q^{65}-210 q^{64}+1619 q^{63}+3332 q^{62}+3403 q^{61}+1731 q^{60}-1471 q^{59}-5153 q^{58}-5186 q^{57}-3550 q^{56}+1116 q^{55}+5626 q^{54}+8418 q^{53}+6419 q^{52}-429 q^{51}-6301 q^{50}-11243 q^{49}-9559 q^{48}-2996 q^{47}+7650 q^{46}+14542 q^{45}+13180 q^{44}+6295 q^{43}-7167 q^{42}-17038 q^{41}-19757 q^{40}-9175 q^{39}+6499 q^{38}+19415 q^{37}+24979 q^{36}+14471 q^{35}-4302 q^{34}-24547 q^{33}-29339 q^{32}-19470 q^{31}+2206 q^{30}+27183 q^{29}+36305 q^{28}+25837 q^{27}-3605 q^{26}-29444 q^{25}-42448 q^{24}-31230 q^{23}+2436 q^{22}+35598 q^{21}+50409 q^{20}+32157 q^{19}-2674 q^{18}-41619 q^{17}-57393 q^{16}-35657 q^{15}+8980 q^{14}+51329 q^{13}+60034 q^{12}+35865 q^{11}-16628 q^{10}-61270 q^9-66026 q^8-28022 q^7+30543 q^6+68012 q^5+67282 q^4+17310 q^3-46396 q^2-79226 q-58840+2410 q^{-1} +60590 q^{-2} +84289 q^{-3} +45773 q^{-4} -26053 q^{-5} -80175 q^{-6} -77915 q^{-7} -20665 q^{-8} +49855 q^{-9} +92073 q^{-10} +64708 q^{-11} -10744 q^{-12} -79734 q^{-13} -90771 q^{-14} -36351 q^{-15} +44212 q^{-16} +100459 q^{-17} +80423 q^{-18} -484 q^{-19} -83866 q^{-20} -106456 q^{-21} -52531 q^{-22} +40469 q^{-23} +112681 q^{-24} +101514 q^{-25} +15029 q^{-26} -85458 q^{-27} -125207 q^{-28} -77564 q^{-29} +25482 q^{-30} +117454 q^{-31} +124960 q^{-32} +43660 q^{-33} -68995 q^{-34} -131746 q^{-35} -104791 q^{-36} -7096 q^{-37} +98093 q^{-38} +132025 q^{-39} +74597 q^{-40} -31220 q^{-41} -109773 q^{-42} -112822 q^{-43} -41784 q^{-44} +55848 q^{-45} +108329 q^{-46} +84731 q^{-47} +7736 q^{-48} -65639 q^{-49} -90391 q^{-50} -55019 q^{-51} +14490 q^{-52} +65121 q^{-53} +66556 q^{-54} +25304 q^{-55} -24938 q^{-56} -52471 q^{-57} -43133 q^{-58} -5939 q^{-59} +27722 q^{-60} +36934 q^{-61} +21177 q^{-62} -4029 q^{-63} -21967 q^{-64} -22953 q^{-65} -7771 q^{-66} +8304 q^{-67} +14801 q^{-68} +10516 q^{-69} +1149 q^{-70} -6742 q^{-71} -8844 q^{-72} -3789 q^{-73} +1900 q^{-74} +4399 q^{-75} +3493 q^{-76} +881 q^{-77} -1556 q^{-78} -2623 q^{-79} -1076 q^{-80} +450 q^{-81} +964 q^{-82} +782 q^{-83} +256 q^{-84} -251 q^{-85} -638 q^{-86} -161 q^{-87} +145 q^{-88} +128 q^{-89} +98 q^{-90} +41 q^{-91} -4 q^{-92} -140 q^{-93} +8 q^{-94} +47 q^{-95} -8 q^{-96} +2 q^{-97} + q^{-98} +19 q^{-99} -32 q^{-100} +9 q^{-101} +13 q^{-102} -12 q^{-103} +2 q^{-104} -2 q^{-105} +7 q^{-106} -5 q^{-107} +3 q^{-109} -3 q^{-110} + q^{-111} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{46}-3 q^{45}-q^{44}+5 q^{43}+3 q^{42}+9 q^{41}-19 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+74 q^{36}-15 q^{35}-77 q^{34}-75 q^{33}-40 q^{32}+200 q^{31}+121 q^{30}-20 q^{29}-199 q^{28}-323 q^{27}+164 q^{26}+297 q^{25}+316 q^{24}-59 q^{23}-655 q^{22}-203 q^{21}+124 q^{20}+681 q^{19}+489 q^{18}-593 q^{17}-576 q^{16}-505 q^{15}+601 q^{14}+1055 q^{13}-49 q^{12}-489 q^{11}-1177 q^{10}+26 q^9+1191 q^8+584 q^7+70 q^6-1488 q^5-682 q^4+889 q^3+990 q^2+776 q-1447-1264 q^{-1} +403 q^{-2} +1197 q^{-3} +1432 q^{-4} -1241 q^{-5} -1742 q^{-6} -149 q^{-7} +1310 q^{-8} +2042 q^{-9} -885 q^{-10} -2102 q^{-11} -796 q^{-12} +1195 q^{-13} +2511 q^{-14} -277 q^{-15} -2092 q^{-16} -1383 q^{-17} +688 q^{-18} +2489 q^{-19} +389 q^{-20} -1515 q^{-21} -1501 q^{-22} +10 q^{-23} +1824 q^{-24} +673 q^{-25} -697 q^{-26} -1042 q^{-27} -348 q^{-28} +940 q^{-29} +469 q^{-30} -164 q^{-31} -439 q^{-32} -293 q^{-33} +353 q^{-34} +156 q^{-35} -10 q^{-36} -95 q^{-37} -127 q^{-38} +115 q^{-39} +8 q^{-40} - q^{-41} + q^{-42} -40 q^{-43} +39 q^{-44} -12 q^{-45} -3 q^{-46} +8 q^{-47} -11 q^{-48} +10 q^{-49} -5 q^{-50} +3 q^{-52} -3 q^{-53} + q^{-54} </math> |

coloured_jones_5 = <math>-q^{70}+3 q^{69}+q^{68}-5 q^{67}-3 q^{66}-3 q^{65}+q^{64}+17 q^{63}+24 q^{62}-6 q^{61}-31 q^{60}-48 q^{59}-41 q^{58}+27 q^{57}+115 q^{56}+123 q^{55}+22 q^{54}-129 q^{53}-253 q^{52}-207 q^{51}+62 q^{50}+371 q^{49}+463 q^{48}+202 q^{47}-307 q^{46}-740 q^{45}-677 q^{44}-23 q^{43}+812 q^{42}+1197 q^{41}+708 q^{40}-465 q^{39}-1538 q^{38}-1586 q^{37}-376 q^{36}+1365 q^{35}+2340 q^{34}+1614 q^{33}-514 q^{32}-2568 q^{31}-2908 q^{30}-978 q^{29}+2015 q^{28}+3782 q^{27}+2756 q^{26}-556 q^{25}-3846 q^{24}-4437 q^{23}-1490 q^{22}+2941 q^{21}+5416 q^{20}+3786 q^{19}-1078 q^{18}-5542 q^{17}-5808 q^{16}-1309 q^{15}+4603 q^{14}+7185 q^{13}+3939 q^{12}-2894 q^{11}-7739 q^{10}-6314 q^9+628 q^8+7503 q^7+8244 q^6+1777 q^5-6628 q^4-9612 q^3-4124 q^2+5447 q+10507+6142 q^{-1} -4104 q^{-2} -11067 q^{-3} -7972 q^{-4} +2905 q^{-5} +11522 q^{-6} +9512 q^{-7} -1745 q^{-8} -11949 q^{-9} -11120 q^{-10} +683 q^{-11} +12452 q^{-12} +12692 q^{-13} +580 q^{-14} -12805 q^{-15} -14452 q^{-16} -2098 q^{-17} +12845 q^{-18} +16041 q^{-19} +4053 q^{-20} -12189 q^{-21} -17348 q^{-22} -6227 q^{-23} +10751 q^{-24} +17753 q^{-25} +8442 q^{-26} -8438 q^{-27} -17228 q^{-28} -10111 q^{-29} +5669 q^{-30} +15431 q^{-31} +10948 q^{-32} -2759 q^{-33} -12830 q^{-34} -10704 q^{-35} +387 q^{-36} +9698 q^{-37} +9464 q^{-38} +1260 q^{-39} -6671 q^{-40} -7605 q^{-41} -2009 q^{-42} +4140 q^{-43} +5542 q^{-44} +2039 q^{-45} -2296 q^{-46} -3654 q^{-47} -1678 q^{-48} +1134 q^{-49} +2213 q^{-50} +1149 q^{-51} -505 q^{-52} -1202 q^{-53} -687 q^{-54} +197 q^{-55} +596 q^{-56} +363 q^{-57} -76 q^{-58} -278 q^{-59} -152 q^{-60} +38 q^{-61} +101 q^{-62} +54 q^{-63} -6 q^{-64} -46 q^{-65} -19 q^{-66} +23 q^{-67} +5 q^{-68} -8 q^{-69} +7 q^{-70} -4 q^{-71} -6 q^{-72} +10 q^{-73} - q^{-74} -7 q^{-75} +5 q^{-76} -3 q^{-78} +3 q^{-79} - q^{-80} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{99}-3 q^{98}-q^{97}+5 q^{96}+3 q^{95}+3 q^{94}-7 q^{93}+q^{92}-20 q^{91}-22 q^{90}+18 q^{89}+32 q^{88}+54 q^{87}+17 q^{86}+25 q^{85}-87 q^{84}-163 q^{83}-103 q^{82}-13 q^{81}+173 q^{80}+231 q^{79}+399 q^{78}+107 q^{77}-285 q^{76}-558 q^{75}-671 q^{74}-345 q^{73}+78 q^{72}+1123 q^{71}+1287 q^{70}+906 q^{69}-75 q^{68}-1313 q^{67}-2108 q^{66}-2284 q^{65}-210 q^{64}+1619 q^{63}+3332 q^{62}+3403 q^{61}+1731 q^{60}-1471 q^{59}-5153 q^{58}-5186 q^{57}-3550 q^{56}+1116 q^{55}+5626 q^{54}+8418 q^{53}+6419 q^{52}-429 q^{51}-6301 q^{50}-11243 q^{49}-9559 q^{48}-2996 q^{47}+7650 q^{46}+14542 q^{45}+13180 q^{44}+6295 q^{43}-7167 q^{42}-17038 q^{41}-19757 q^{40}-9175 q^{39}+6499 q^{38}+19415 q^{37}+24979 q^{36}+14471 q^{35}-4302 q^{34}-24547 q^{33}-29339 q^{32}-19470 q^{31}+2206 q^{30}+27183 q^{29}+36305 q^{28}+25837 q^{27}-3605 q^{26}-29444 q^{25}-42448 q^{24}-31230 q^{23}+2436 q^{22}+35598 q^{21}+50409 q^{20}+32157 q^{19}-2674 q^{18}-41619 q^{17}-57393 q^{16}-35657 q^{15}+8980 q^{14}+51329 q^{13}+60034 q^{12}+35865 q^{11}-16628 q^{10}-61270 q^9-66026 q^8-28022 q^7+30543 q^6+68012 q^5+67282 q^4+17310 q^3-46396 q^2-79226 q-58840+2410 q^{-1} +60590 q^{-2} +84289 q^{-3} +45773 q^{-4} -26053 q^{-5} -80175 q^{-6} -77915 q^{-7} -20665 q^{-8} +49855 q^{-9} +92073 q^{-10} +64708 q^{-11} -10744 q^{-12} -79734 q^{-13} -90771 q^{-14} -36351 q^{-15} +44212 q^{-16} +100459 q^{-17} +80423 q^{-18} -484 q^{-19} -83866 q^{-20} -106456 q^{-21} -52531 q^{-22} +40469 q^{-23} +112681 q^{-24} +101514 q^{-25} +15029 q^{-26} -85458 q^{-27} -125207 q^{-28} -77564 q^{-29} +25482 q^{-30} +117454 q^{-31} +124960 q^{-32} +43660 q^{-33} -68995 q^{-34} -131746 q^{-35} -104791 q^{-36} -7096 q^{-37} +98093 q^{-38} +132025 q^{-39} +74597 q^{-40} -31220 q^{-41} -109773 q^{-42} -112822 q^{-43} -41784 q^{-44} +55848 q^{-45} +108329 q^{-46} +84731 q^{-47} +7736 q^{-48} -65639 q^{-49} -90391 q^{-50} -55019 q^{-51} +14490 q^{-52} +65121 q^{-53} +66556 q^{-54} +25304 q^{-55} -24938 q^{-56} -52471 q^{-57} -43133 q^{-58} -5939 q^{-59} +27722 q^{-60} +36934 q^{-61} +21177 q^{-62} -4029 q^{-63} -21967 q^{-64} -22953 q^{-65} -7771 q^{-66} +8304 q^{-67} +14801 q^{-68} +10516 q^{-69} +1149 q^{-70} -6742 q^{-71} -8844 q^{-72} -3789 q^{-73} +1900 q^{-74} +4399 q^{-75} +3493 q^{-76} +881 q^{-77} -1556 q^{-78} -2623 q^{-79} -1076 q^{-80} +450 q^{-81} +964 q^{-82} +782 q^{-83} +256 q^{-84} -251 q^{-85} -638 q^{-86} -161 q^{-87} +145 q^{-88} +128 q^{-89} +98 q^{-90} +41 q^{-91} -4 q^{-92} -140 q^{-93} +8 q^{-94} +47 q^{-95} -8 q^{-96} +2 q^{-97} + q^{-98} +19 q^{-99} -32 q^{-100} +9 q^{-101} +13 q^{-102} -12 q^{-103} +2 q^{-104} -2 q^{-105} +7 q^{-106} -5 q^{-107} +3 q^{-109} -3 q^{-110} + q^{-111} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 93]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[20, 8, 1, 7], X[18, 13, 19, 14],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 93]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[20, 8, 1, 7], X[18, 13, 19, 14],
X[14, 9, 15, 10], X[10, 3, 11, 4], X[4, 11, 5, 12],
X[14, 9, 15, 10], X[10, 3, 11, 4], X[4, 11, 5, 12],
X[12, 17, 13, 18], X[8, 20, 9, 19], X[2, 16, 3, 15]]</nowiki></pre></td></tr>
X[12, 17, 13, 18], X[8, 20, 9, 19], X[2, 16, 3, 15]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 93]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 93]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8,
-4, 9, -3]</nowiki></pre></td></tr>
-4, 9, -3]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 93]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 16, 20, 14, 4, 18, 2, 12, 8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 93]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 93]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -1, 2, -1, 2, 3, -2, 3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 16, 20, 14, 4, 18, 2, 12, 8]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 93]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 93]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, -1, 2, -1, 2, 3, -2, 3}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 93]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_93_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 93]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 93]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 15 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 93]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 93]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_93_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 93]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 93]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 15 2 3
-17 + -- - -- + -- + 15 t - 8 t + 2 t
-17 + -- - -- + -- + 15 t - 8 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 93]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 93]][z]</nowiki></code></td></tr>
1 + z + 4 z + 2 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 93]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + z + 4 z + 2 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 93]], KnotSignature[Knot[10, 93]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{67, -2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 93]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 6 9 10 11 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 93]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 93]], KnotSignature[Knot[10, 93]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{67, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 93]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 6 9 10 11 2 3 4
-10 - q + -- - -- + -- - -- + -- + 8 q - 5 q + 3 q - q
-10 - q + -- - -- + -- - -- + -- + 8 q - 5 q + 3 q - q
5 4 3 2 q
5 4 3 2 q
q q q q</nowiki></pre></td></tr>
q q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 93]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 93]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -12 2 -8 3 2 4 10 12
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 93]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 93]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -16 -14 -12 2 -8 3 2 4 10 12
1 - q + q - q - q + --- - q + -- - 2 q + 2 q + q - q
1 - q + q - q - q + --- - q + -- - 2 q + 2 q + q - q
10 6
10 6
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 93]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 93]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
2 4 2 2 z 2 2 4 2 4 z 2 4
2 4 2 2 z 2 2 4 2 4 z 2 4
2 a - a + 2 z - ---- + 3 a z - 2 a z + 3 z - -- + 3 a z -
2 a - a + 2 z - ---- + 3 a z - 2 a z + 3 z - -- + 3 a z -
Line 154: Line 191:
4 4 6 2 6
4 4 6 2 6
a z + z + a z</nowiki></pre></td></tr>
a z + z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 93]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 93]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
2 4 2 z 6 z 3 5 2 6 z 2 2
2 4 2 z 6 z 3 5 2 6 z 2 2
-2 a - a - --- - --- - 6 a z - a z + a z - 6 z - ---- + 7 a z +
-2 a - a - --- - --- - 6 a z - a z + a z - 6 z - ---- + 7 a z +
Line 185: Line 226:
-- - ---- + 5 a z + 9 a z + 9 z + ---- + 6 a z + ---- + 2 a z
-- - ---- + 5 a z + 9 a z + 9 z + ---- + 6 a z + ---- + 2 a z
3 a 2 a
3 a 2 a
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 93]], Vassiliev[3][Knot[10, 93]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 93]], Vassiliev[3][Knot[10, 93]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 93]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 6 1 2 1 4 2 5 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 93]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>6 6 1 2 1 4 2 5 4
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
Line 202: Line 251:
5 4 7 4 9 5
5 4 7 4 9 5
q t + 2 q t + q t</nowiki></pre></td></tr>
q t + 2 q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 93], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 3 3 3 14 16 4 35 39 7 63
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 93], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 3 3 3 14 16 4 35 39 7 63
35 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- +
35 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- +
16 15 14 13 12 11 10 9 8 7
16 15 14 13 12 11 10 9 8 7
Line 216: Line 269:
6 7 8 9 10 11 12 13
6 7 8 9 10 11 12 13
6 q + 31 q - 14 q - 9 q + 11 q - q - 3 q + q</nowiki></pre></td></tr>
6 q + 31 q - 14 q - 9 q + 11 q - q - 3 q + q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 16:57, 1 September 2005

10 92.gif

10_92

10 94.gif

10_94

10 93.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 93's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 93 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,6,17,5 X20,8,1,7 X18,13,19,14 X14,9,15,10 X10,3,11,4 X4,11,5,12 X12,17,13,18 X8,20,9,19 X2,16,3,15
Gauss code 1, -10, 6, -7, 2, -1, 3, -9, 5, -6, 7, -8, 4, -5, 10, -2, 8, -4, 9, -3
Dowker-Thistlethwaite code 6 10 16 20 14 4 18 2 12 8
Conway Notation [.3.20.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

10 93 ML.gif 10 93 AP.gif
[{3, 8}, {9, 7}, {8, 12}, {2, 6}, {10, 13}, {11, 9}, {4, 10}, {6, 11}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}]

[edit Notes on presentations of 10 93]


Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-4]
Hyperbolic Volume 13.0165
A-Polynomial See Data:10 93/A-polynomial

[edit Notes for 10 93's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 10 93's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-8 t^2+15 t-17+15 t^{-1} -8 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+4 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 67, -2 }
Jones polynomial [math]\displaystyle{ -q^4+3 q^3-5 q^2+8 q-10+11 q^{-1} -10 q^{-2} +9 q^{-3} -6 q^{-4} +3 q^{-5} - q^{-6} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^2 z^6+z^6-a^4 z^4+3 a^2 z^4-z^4 a^{-2} +3 z^4-2 a^4 z^2+3 a^2 z^2-2 z^2 a^{-2} +2 z^2-a^4+2 a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 a z^9+2 z^9 a^{-1} +6 a^2 z^8+3 z^8 a^{-2} +9 z^8+9 a^3 z^7+5 a z^7-3 z^7 a^{-1} +z^7 a^{-3} +9 a^4 z^6-9 a^2 z^6-13 z^6 a^{-2} -31 z^6+6 a^5 z^5-17 a^3 z^5-29 a z^5-10 z^5 a^{-1} -4 z^5 a^{-3} +3 a^6 z^4-14 a^4 z^4-6 a^2 z^4+17 z^4 a^{-2} +28 z^4+a^7 z^3-4 a^5 z^3+7 a^3 z^3+25 a z^3+18 z^3 a^{-1} +5 z^3 a^{-3} +7 a^4 z^2+7 a^2 z^2-6 z^2 a^{-2} -6 z^2+a^5 z-a^3 z-6 a z-6 z a^{-1} -2 z a^{-3} -a^4-2 a^2 }[/math]
The A2 invariant [math]\displaystyle{ -q^{18}+q^{16}-q^{14}-q^{12}+2 q^{10}-q^8+3 q^6+1-2 q^{-2} +2 q^{-4} + q^{-10} - q^{-12} }[/math]
The G2 invariant [math]\displaystyle{ q^{100}-2 q^{98}+3 q^{96}-4 q^{94}+3 q^{92}-2 q^{90}-q^{88}+7 q^{86}-11 q^{84}+15 q^{82}-18 q^{80}+13 q^{78}-6 q^{76}-6 q^{74}+23 q^{72}-33 q^{70}+39 q^{68}-37 q^{66}+22 q^{64}-2 q^{62}-26 q^{60}+49 q^{58}-63 q^{56}+61 q^{54}-43 q^{52}+7 q^{50}+37 q^{48}-69 q^{46}+80 q^{44}-60 q^{42}+11 q^{40}+38 q^{38}-70 q^{36}+69 q^{34}-26 q^{32}-31 q^{30}+85 q^{28}-98 q^{26}+64 q^{24}+7 q^{22}-85 q^{20}+135 q^{18}-133 q^{16}+85 q^{14}-5 q^{12}-69 q^{10}+123 q^8-132 q^6+97 q^4-37 q^2-33+80 q^{-2} -93 q^{-4} +70 q^{-6} -15 q^{-8} -39 q^{-10} +75 q^{-12} -78 q^{-14} +39 q^{-16} +27 q^{-18} -87 q^{-20} +113 q^{-22} -92 q^{-24} +32 q^{-26} +43 q^{-28} -95 q^{-30} +111 q^{-32} -86 q^{-34} +36 q^{-36} +15 q^{-38} -54 q^{-40} +62 q^{-42} -47 q^{-44} +24 q^{-46} - q^{-48} -12 q^{-50} +13 q^{-52} -11 q^{-54} +6 q^{-56} -2 q^{-58} + q^{-60} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{34}{3} }[/math] [math]\displaystyle{ -\frac{86}{3} }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ -\frac{176}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ -72 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{136}{3} }[/math] [math]\displaystyle{ -\frac{344}{3} }[/math] [math]\displaystyle{ \frac{751}{30} }[/math] [math]\displaystyle{ \frac{698}{15} }[/math] [math]\displaystyle{ -\frac{3658}{45} }[/math] [math]\displaystyle{ -\frac{655}{18} }[/math] [math]\displaystyle{ -\frac{2129}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 10 93. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
9          1-1
7         2 2
5        31 -2
3       52  3
1      53   -2
-1     65    1
-3    56     1
-5   45      -1
-7  25       3
-9 14        -3
-11 2         2
-131          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials