10 94: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_94}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 94 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,7,-9,4,-1,2,-6,8,-7,3,-10,5,-4,6,-8,9,-3,10,-5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = [[10_41]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{20}-3 q^{19}+2 q^{18}+6 q^{17}-15 q^{16}+9 q^{15}+19 q^{14}-43 q^{13}+20 q^{12}+46 q^{11}-81 q^{10}+23 q^9+79 q^8-104 q^7+11 q^6+98 q^5-97 q^4-9 q^3+94 q^2-67 q-24+70 q^{-1} -31 q^{-2} -27 q^{-3} +36 q^{-4} -6 q^{-5} -15 q^{-6} +10 q^{-7} + q^{-8} -3 q^{-9} + q^{-10} </math> | |
|||
coloured_jones_3 = <math>q^{39}-3 q^{38}+2 q^{37}+2 q^{36}-7 q^{34}+3 q^{33}+10 q^{32}-8 q^{31}-14 q^{30}+21 q^{29}+21 q^{28}-44 q^{27}-43 q^{26}+83 q^{25}+81 q^{24}-124 q^{23}-146 q^{22}+161 q^{21}+231 q^{20}-182 q^{19}-321 q^{18}+176 q^{17}+406 q^{16}-148 q^{15}-469 q^{14}+102 q^{13}+504 q^{12}-46 q^{11}-509 q^{10}-18 q^9+492 q^8+81 q^7-456 q^6-137 q^5+395 q^4+197 q^3-332 q^2-229 q+241+259 q^{-1} -161 q^{-2} -245 q^{-3} +71 q^{-4} +219 q^{-5} -9 q^{-6} -164 q^{-7} -37 q^{-8} +112 q^{-9} +46 q^{-10} -58 q^{-11} -44 q^{-12} +26 q^{-13} +29 q^{-14} -8 q^{-15} -15 q^{-16} +2 q^{-17} +5 q^{-18} + q^{-19} -3 q^{-20} + q^{-21} </math> | |
|||
coloured_jones_4 = <math>q^{64}-3 q^{63}+2 q^{62}+2 q^{61}-4 q^{60}+8 q^{59}-13 q^{58}+5 q^{57}+5 q^{56}-13 q^{55}+39 q^{54}-34 q^{53}-11 q^{51}-49 q^{50}+128 q^{49}-7 q^{48}+20 q^{47}-112 q^{46}-240 q^{45}+235 q^{44}+187 q^{43}+271 q^{42}-231 q^{41}-786 q^{40}+58 q^{39}+473 q^{38}+1020 q^{37}+5 q^{36}-1566 q^{35}-698 q^{34}+403 q^{33}+2063 q^{32}+874 q^{31}-2018 q^{30}-1745 q^{29}-294 q^{28}+2750 q^{27}+2000 q^{26}-1809 q^{25}-2418 q^{24}-1261 q^{23}+2752 q^{22}+2758 q^{21}-1206 q^{20}-2456 q^{19}-1987 q^{18}+2280 q^{17}+2954 q^{16}-546 q^{15}-2063 q^{14}-2381 q^{13}+1582 q^{12}+2781 q^{11}+122 q^{10}-1436 q^9-2550 q^8+703 q^7+2313 q^6+793 q^5-568 q^4-2417 q^3-259 q^2+1471 q+1195+412 q^{-1} -1778 q^{-2} -906 q^{-3} +396 q^{-4} +996 q^{-5} +1052 q^{-6} -782 q^{-7} -871 q^{-8} -383 q^{-9} +348 q^{-10} +990 q^{-11} -5 q^{-12} -361 q^{-13} -501 q^{-14} -152 q^{-15} +492 q^{-16} +194 q^{-17} +34 q^{-18} -228 q^{-19} -214 q^{-20} +113 q^{-21} +80 q^{-22} +93 q^{-23} -34 q^{-24} -88 q^{-25} +9 q^{-26} +2 q^{-27} +32 q^{-28} +4 q^{-29} -18 q^{-30} +2 q^{-31} -3 q^{-32} +5 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math> | |
|||
coloured_jones_5 = <math>q^{95}-3 q^{94}+2 q^{93}+2 q^{92}-4 q^{91}+4 q^{90}+2 q^{89}-11 q^{88}+11 q^{86}+12 q^{84}+4 q^{83}-44 q^{82}-32 q^{81}+22 q^{80}+61 q^{79}+81 q^{78}+20 q^{77}-136 q^{76}-211 q^{75}-76 q^{74}+201 q^{73}+416 q^{72}+296 q^{71}-218 q^{70}-761 q^{69}-753 q^{68}+68 q^{67}+1191 q^{66}+1559 q^{65}+467 q^{64}-1545 q^{63}-2787 q^{62}-1659 q^{61}+1585 q^{60}+4340 q^{59}+3639 q^{58}-885 q^{57}-5879 q^{56}-6507 q^{55}-867 q^{54}+7029 q^{53}+9896 q^{52}+3793 q^{51}-7210 q^{50}-13343 q^{49}-7751 q^{48}+6177 q^{47}+16249 q^{46}+12173 q^{45}-3926 q^{44}-18039 q^{43}-16463 q^{42}+767 q^{41}+18567 q^{40}+20004 q^{39}+2694 q^{38}-17892 q^{37}-22400 q^{36}-5971 q^{35}+16382 q^{34}+23618 q^{33}+8658 q^{32}-14466 q^{31}-23833 q^{30}-10608 q^{29}+12469 q^{28}+23334 q^{27}+11921 q^{26}-10514 q^{25}-22459 q^{24}-12816 q^{23}+8650 q^{22}+21309 q^{21}+13516 q^{20}-6687 q^{19}-19936 q^{18}-14173 q^{17}+4472 q^{16}+18273 q^{15}+14765 q^{14}-1980 q^{13}-16079 q^{12}-15114 q^{11}-886 q^{10}+13335 q^9+15054 q^8+3680 q^7-9920 q^6-14137 q^5-6338 q^4+6090 q^3+12432 q^2+8112 q-2169-9668 q^{-1} -8940 q^{-2} -1349 q^{-3} +6417 q^{-4} +8388 q^{-5} +3926 q^{-6} -2899 q^{-7} -6808 q^{-8} -5237 q^{-9} -84 q^{-10} +4425 q^{-11} +5228 q^{-12} +2223 q^{-13} -2006 q^{-14} -4181 q^{-15} -3107 q^{-16} -73 q^{-17} +2604 q^{-18} +3054 q^{-19} +1266 q^{-20} -1079 q^{-21} -2232 q^{-22} -1680 q^{-23} -65 q^{-24} +1298 q^{-25} +1450 q^{-26} +592 q^{-27} -467 q^{-28} -957 q^{-29} -678 q^{-30} -13 q^{-31} +478 q^{-32} +511 q^{-33} +186 q^{-34} -169 q^{-35} -277 q^{-36} -174 q^{-37} +130 q^{-39} +113 q^{-40} +19 q^{-41} -41 q^{-42} -39 q^{-43} -29 q^{-44} +6 q^{-45} +27 q^{-46} +6 q^{-47} -6 q^{-48} - q^{-49} -3 q^{-50} -3 q^{-51} +5 q^{-52} + q^{-53} -3 q^{-54} + q^{-55} </math> | |
|||
coloured_jones_6 = <math>q^{132}-3 q^{131}+2 q^{130}+2 q^{129}-4 q^{128}+4 q^{127}-2 q^{126}+4 q^{125}-16 q^{124}+6 q^{123}+24 q^{122}-16 q^{121}+10 q^{120}-12 q^{119}-7 q^{118}-58 q^{117}+23 q^{116}+114 q^{115}+24 q^{113}-67 q^{112}-106 q^{111}-230 q^{110}+49 q^{109}+398 q^{108}+213 q^{107}+191 q^{106}-186 q^{105}-535 q^{104}-929 q^{103}-187 q^{102}+1025 q^{101}+1192 q^{100}+1275 q^{99}+89 q^{98}-1663 q^{97}-3400 q^{96}-2206 q^{95}+1253 q^{94}+3791 q^{93}+5717 q^{92}+3575 q^{91}-2211 q^{90}-9329 q^{89}-10398 q^{88}-3749 q^{87}+5863 q^{86}+16309 q^{85}+17335 q^{84}+5570 q^{83}-15195 q^{82}-28684 q^{81}-24253 q^{80}-4001 q^{79}+27437 q^{78}+45846 q^{77}+35069 q^{76}-5452 q^{75}-48249 q^{74}-64110 q^{73}-41443 q^{72}+19312 q^{71}+75854 q^{70}+87674 q^{69}+36364 q^{68}-45260 q^{67}-104637 q^{66}-103483 q^{65}-23708 q^{64}+80141 q^{63}+138724 q^{62}+101857 q^{61}-6168 q^{60}-116553 q^{59}-160243 q^{58}-87818 q^{57}+48286 q^{56}+158531 q^{55}+158071 q^{54}+50968 q^{53}-93242 q^{52}-183941 q^{51}-139743 q^{50}+1003 q^{49}+144507 q^{48}+181507 q^{47}+95214 q^{46}-56446 q^{45}-176214 q^{44}-161683 q^{43}-34928 q^{42}+117935 q^{41}+177797 q^{40}+114897 q^{39}-27884 q^{38}-157073 q^{37}-162353 q^{36}-53444 q^{35}+95387 q^{34}+165160 q^{33}+120705 q^{32}-9091 q^{31}-138620 q^{30}-157689 q^{29}-66087 q^{28}+75147 q^{27}+151950 q^{26}+125991 q^{25}+11328 q^{24}-116998 q^{23}-152588 q^{22}-83371 q^{21}+46553 q^{20}+132448 q^{19}+132174 q^{18}+40951 q^{17}-82204 q^{16}-138997 q^{15}-102946 q^{14}+4767 q^{13}+96351 q^{12}+128048 q^{11}+73582 q^{10}-31451 q^9-105278 q^8-109818 q^7-40252 q^6+42040 q^5+99972 q^4+90405 q^3+21863 q^2-50746 q-88427-66082 q^{-1} -13942 q^{-2} +48522 q^{-3} +74828 q^{-4} +52409 q^{-5} +4740 q^{-6} -41627 q^{-7} -56203 q^{-8} -44217 q^{-9} -2967 q^{-10} +33095 q^{-11} +45216 q^{-12} +32694 q^{-13} +3772 q^{-14} -20968 q^{-15} -36810 q^{-16} -26171 q^{-17} -5167 q^{-18} +15116 q^{-19} +25233 q^{-20} +21136 q^{-21} +8596 q^{-22} -10706 q^{-23} -18002 q^{-24} -16746 q^{-25} -7232 q^{-26} +4280 q^{-27} +12409 q^{-28} +14222 q^{-29} +5761 q^{-30} -1610 q^{-31} -8158 q^{-32} -9283 q^{-33} -6138 q^{-34} +108 q^{-35} +5846 q^{-36} +5829 q^{-37} +4516 q^{-38} +490 q^{-39} -2675 q^{-40} -4416 q^{-41} -3105 q^{-42} -200 q^{-43} +1170 q^{-44} +2474 q^{-45} +1874 q^{-46} +722 q^{-47} -917 q^{-48} -1343 q^{-49} -828 q^{-50} -519 q^{-51} +333 q^{-52} +611 q^{-53} +640 q^{-54} +97 q^{-55} -161 q^{-56} -171 q^{-57} -289 q^{-58} -87 q^{-59} +39 q^{-60} +162 q^{-61} +48 q^{-62} +11 q^{-63} +17 q^{-64} -53 q^{-65} -29 q^{-66} -13 q^{-67} +30 q^{-68} + q^{-69} -4 q^{-70} +11 q^{-71} -6 q^{-72} -3 q^{-73} -3 q^{-74} +5 q^{-75} + q^{-76} -3 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_7 = <math>q^{175}-3 q^{174}+2 q^{173}+2 q^{172}-4 q^{171}+4 q^{170}-2 q^{169}-q^{167}-10 q^{166}+19 q^{165}+8 q^{164}-18 q^{163}+5 q^{162}-15 q^{161}-5 q^{160}+q^{159}-22 q^{158}+81 q^{157}+52 q^{156}-48 q^{155}-36 q^{154}-105 q^{153}-34 q^{152}+17 q^{151}-4 q^{150}+269 q^{149}+221 q^{148}-70 q^{147}-199 q^{146}-470 q^{145}-260 q^{144}+56 q^{143}+235 q^{142}+909 q^{141}+813 q^{140}+45 q^{139}-757 q^{138}-1865 q^{137}-1601 q^{136}-340 q^{135}+1184 q^{134}+3515 q^{133}+3848 q^{132}+1861 q^{131}-1680 q^{130}-6640 q^{129}-8380 q^{128}-5724 q^{127}+802 q^{126}+10672 q^{125}+16707 q^{124}+15085 q^{123}+4513 q^{122}-14385 q^{121}-29965 q^{120}-33273 q^{119}-19039 q^{118}+13087 q^{117}+46263 q^{116}+63451 q^{115}+50372 q^{114}+1733 q^{113}-60331 q^{112}-105985 q^{111}-105078 q^{110}-41237 q^{109}+60425 q^{108}+154271 q^{107}+186189 q^{106}+117900 q^{105}-29815 q^{104}-194866 q^{103}-289047 q^{102}-238228 q^{101}-48084 q^{100}+206381 q^{99}+396985 q^{98}+399254 q^{97}+185801 q^{96}-166238 q^{95}-486164 q^{94}-584376 q^{93}-381608 q^{92}+58293 q^{91}+527985 q^{90}+764882 q^{89}+619520 q^{88}+120754 q^{87}-500862 q^{86}-909006 q^{85}-869481 q^{84}-355415 q^{83}+397541 q^{82}+988808 q^{81}+1095124 q^{80}+617173 q^{79}-227763 q^{78}-991741 q^{77}-1266294 q^{76}-869673 q^{75}+18068 q^{74}+922380 q^{73}+1364500 q^{72}+1080639 q^{71}+199484 q^{70}-800665 q^{69}-1389807 q^{68}-1230508 q^{67}-393982 q^{66}+655093 q^{65}+1356333 q^{64}+1314536 q^{63}+545256 q^{62}-512090 q^{61}-1286708 q^{60}-1342653 q^{59}-647125 q^{58}+390980 q^{57}+1204370 q^{56}+1332481 q^{55}+705063 q^{54}-299606 q^{53}-1126300 q^{52}-1303303 q^{51}-732784 q^{50}+234885 q^{49}+1061215 q^{48}+1271349 q^{47}+746410 q^{46}-187597 q^{45}-1009452 q^{44}-1245203 q^{43}-759780 q^{42}+144221 q^{41}+964206 q^{40}+1227969 q^{39}+783101 q^{38}-92845 q^{37}-916086 q^{36}-1215920 q^{35}-820069 q^{34}+23538 q^{33}+853711 q^{32}+1201354 q^{31}+869761 q^{30}+69530 q^{29}-767224 q^{28}-1174366 q^{27}-925729 q^{26}-186111 q^{25}+649301 q^{24}+1122377 q^{23}+976647 q^{22}+321900 q^{21}-496172 q^{20}-1035467 q^{19}-1008835 q^{18}-464207 q^{17}+311737 q^{16}+904681 q^{15}+1005049 q^{14}+596843 q^{13}-105025 q^{12}-729095 q^{11}-952809 q^{10}-698377 q^9-103849 q^8+515423 q^7+842248 q^6+748498 q^5+292499 q^4-280904 q^3-677366 q^2-732689 q-433424+51925 q^{-1} +471075 q^{-2} +646911 q^{-3} +507064 q^{-4} +142400 q^{-5} -250530 q^{-6} -502497 q^{-7} -503040 q^{-8} -275515 q^{-9} +47079 q^{-10} +323627 q^{-11} +428409 q^{-12} +332780 q^{-13} +108730 q^{-14} -143171 q^{-15} -304628 q^{-16} -315951 q^{-17} -198092 q^{-18} -6279 q^{-19} +163929 q^{-20} +242973 q^{-21} +217545 q^{-22} +102698 q^{-23} -38052 q^{-24} -143161 q^{-25} -181886 q^{-26} -139635 q^{-27} -48441 q^{-28} +47088 q^{-29} +115234 q^{-30} +126652 q^{-31} +88156 q^{-32} +23020 q^{-33} -45828 q^{-34} -85074 q^{-35} -86621 q^{-36} -57023 q^{-37} -6993 q^{-38} +36694 q^{-39} +60738 q^{-40} +60134 q^{-41} +34151 q^{-42} +509 q^{-43} -28341 q^{-44} -43758 q^{-45} -38176 q^{-46} -20332 q^{-47} +2480 q^{-48} +22238 q^{-49} +28615 q^{-50} +24031 q^{-51} +11049 q^{-52} -5012 q^{-53} -14943 q^{-54} -18150 q^{-55} -14068 q^{-56} -4414 q^{-57} +4131 q^{-58} +9997 q^{-59} +10928 q^{-60} +6630 q^{-61} +1590 q^{-62} -3321 q^{-63} -6056 q^{-64} -5363 q^{-65} -3300 q^{-66} -76 q^{-67} +2515 q^{-68} +2964 q^{-69} +2534 q^{-70} +1160 q^{-71} -408 q^{-72} -1139 q^{-73} -1558 q^{-74} -1057 q^{-75} -148 q^{-76} +288 q^{-77} +613 q^{-78} +543 q^{-79} +272 q^{-80} +100 q^{-81} -217 q^{-82} -303 q^{-83} -136 q^{-84} -58 q^{-85} +53 q^{-86} +66 q^{-87} +42 q^{-88} +79 q^{-89} +2 q^{-90} -44 q^{-91} -24 q^{-92} -14 q^{-93} +11 q^{-94} +4 q^{-95} -9 q^{-96} +13 q^{-97} +6 q^{-98} -6 q^{-99} -3 q^{-100} -3 q^{-101} +5 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 94]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[2, 8, 3, 7], X[18, 12, 19, 11], X[14, 5, 15, 6], |
|||
X[20, 14, 1, 13], X[8, 15, 9, 16], X[10, 4, 11, 3], X[16, 9, 17, 10], |
|||
X[4, 17, 5, 18], X[12, 20, 13, 19]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 94]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9, |
|||
-3, 10, -5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 94]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 2, 16, 18, 20, 8, 4, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 94]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, -2, -2, 1, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 94]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 94]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_94_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 94]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 94]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 9 14 2 3 4 |
|||
-15 - t + -- - -- + -- + 14 t - 9 t + 4 t - t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 94]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 - 2 z - 5 z - 4 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 94]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 94]], KnotSignature[Knot[10, 94]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{71, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 94]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 6 2 3 4 5 6 7 |
|||
-8 + q - -- + - + 11 q - 12 q + 11 q - 9 q + 6 q - 3 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 94]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 -6 2 2 4 6 8 10 14 16 |
|||
1 + q - q + -- + 2 q - 3 q + 2 q - 3 q + q - q + 2 q - |
|||
4 |
|||
q |
|||
18 20 |
|||
q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 94]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
2 4 2 5 z 12 z 4 4 z 13 z 6 z |
|||
3 + -- - -- + 5 z + ---- - ----- + 4 z + ---- - ----- + z + -- - |
|||
4 2 4 2 4 2 4 |
|||
a a a a a a a |
|||
6 8 |
|||
6 z z |
|||
---- - -- |
|||
2 2 |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 94]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
2 4 3 z 5 z 3 z 2 z 2 z 6 z 18 z |
|||
3 + -- + -- - --- - --- - --- - a z - 7 z - -- + ---- - ---- - ----- + |
|||
4 2 5 3 a 8 6 4 2 |
|||
a a a a a a a a |
|||
3 3 3 3 4 4 |
|||
2 2 3 z 9 z 16 z 10 z 3 4 z 6 z |
|||
2 a z - ---- + ---- + ----- + ----- + 6 a z + 11 z + -- - ---- + |
|||
7 5 3 a 8 6 |
|||
a a a a a |
|||
4 4 5 5 5 5 |
|||
10 z 31 z 2 4 3 z 10 z 15 z 11 z 5 |
|||
----- + ----- - 3 a z + ---- - ----- - ----- - ----- - 9 a z - |
|||
4 2 7 5 3 a |
|||
a a a a a |
|||
6 6 6 7 7 |
|||
6 5 z 9 z 27 z 2 6 6 z 3 z 7 8 |
|||
12 z + ---- - ---- - ----- + a z + ---- + ---- + 3 a z + 4 z + |
|||
6 4 2 5 3 |
|||
a a a a a |
|||
8 8 9 9 |
|||
5 z 9 z 2 z 2 z |
|||
---- + ---- + ---- + ---- |
|||
4 2 3 a |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 94]], Vassiliev[3][Knot[10, 94]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 94]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 4 2 4 4 q |
|||
7 q + 5 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
3 5 5 2 7 2 7 3 9 3 9 4 |
|||
6 q t + 6 q t + 5 q t + 6 q t + 4 q t + 5 q t + 2 q t + |
|||
11 4 11 5 13 5 15 6 |
|||
4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 94], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 3 -8 10 15 6 36 27 31 70 |
|||
-24 + q - -- + q + -- - -- - -- + -- - -- - -- + -- - 67 q + |
|||
9 7 6 5 4 3 2 q |
|||
q q q q q q q |
|||
2 3 4 5 6 7 8 9 |
|||
94 q - 9 q - 97 q + 98 q + 11 q - 104 q + 79 q + 23 q - |
|||
10 11 12 13 14 15 16 17 |
|||
81 q + 46 q + 20 q - 43 q + 19 q + 9 q - 15 q + 6 q + |
|||
18 19 20 |
|||
2 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:57, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 94's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X2837 X18,12,19,11 X14,5,15,6 X20,14,1,13 X8,15,9,16 X10,4,11,3 X16,9,17,10 X4,17,5,18 X12,20,13,19 |
Gauss code | 1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9, -3, 10, -5 |
Dowker-Thistlethwaite code | 6 10 14 2 16 18 20 8 4 12 |
Conway Notation | [.30.2.2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{7, 12}, {2, 11}, {12, 8}, {6, 1}, {5, 7}, {4, 6}, {3, 5}, {9, 4}, {8, 2}, {10, 3}, {11, 9}, {1, 10}] |
[edit Notes on presentations of 10 94]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 94"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X2837 X18,12,19,11 X14,5,15,6 X20,14,1,13 X8,15,9,16 X10,4,11,3 X16,9,17,10 X4,17,5,18 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -2, 7, -9, 4, -1, 2, -6, 8, -7, 3, -10, 5, -4, 6, -8, 9, -3, 10, -5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 2 16 18 20 8 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.30.2.2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 12}, {2, 11}, {12, 8}, {6, 1}, {5, 7}, {4, 6}, {3, 5}, {9, 4}, {8, 2}, {10, 3}, {11, 9}, {1, 10}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 94"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_41,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 94"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_41,} |
Vassiliev invariants
V2 and V3: | (-2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 94. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|