10 99: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 10 | |
|||
<span id="top"></span> |
|||
k = 99 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-5,9,-2,3,-7,6,-4,5,-3,10,-8,7,-6/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|- valign=top |
|||
</table> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_crossings = 10 | |
|||
|{{Rolfsen Knot Site Links|n=10|k=99|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-5,9,-2,3,-7,6,-4,5,-3,10,-8,7,-6/goTop.html}} |
|||
braid_width = 3 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_index = 3 | |
|||
|} |
|||
same_alexander = | |
|||
same_jones = | |
|||
<br style="clear:both" /> |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 48: | Line 39: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{15}-3 q^{14}+2 q^{13}+8 q^{12}-19 q^{11}+5 q^{10}+37 q^9-53 q^8-7 q^7+91 q^6-85 q^5-40 q^4+146 q^3-93 q^2-75 q+171-75 q^{-1} -93 q^{-2} +146 q^{-3} -40 q^{-4} -85 q^{-5} +91 q^{-6} -7 q^{-7} -53 q^{-8} +37 q^{-9} +5 q^{-10} -19 q^{-11} +8 q^{-12} +2 q^{-13} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+3 q^{29}-2 q^{28}-3 q^{27}+q^{26}+12 q^{25}-6 q^{24}-27 q^{23}+9 q^{22}+61 q^{21}-9 q^{20}-109 q^{19}-23 q^{18}+190 q^{17}+75 q^{16}-261 q^{15}-185 q^{14}+332 q^{13}+325 q^{12}-364 q^{11}-495 q^{10}+357 q^9+667 q^8-320 q^7-809 q^6+233 q^5+939 q^4-161 q^3-987 q^2+37 q+1043+37 q^{-1} -987 q^{-2} -161 q^{-3} +939 q^{-4} +233 q^{-5} -809 q^{-6} -320 q^{-7} +667 q^{-8} +357 q^{-9} -495 q^{-10} -364 q^{-11} +325 q^{-12} +332 q^{-13} -185 q^{-14} -261 q^{-15} +75 q^{-16} +190 q^{-17} -23 q^{-18} -109 q^{-19} -9 q^{-20} +61 q^{-21} +9 q^{-22} -27 q^{-23} -6 q^{-24} +12 q^{-25} + q^{-26} -3 q^{-27} -2 q^{-28} +3 q^{-29} - q^{-30} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{50}-3 q^{49}+2 q^{48}+3 q^{47}-6 q^{46}+6 q^{45}-11 q^{44}+12 q^{43}+16 q^{42}-35 q^{41}+7 q^{40}-38 q^{39}+66 q^{38}+100 q^{37}-105 q^{36}-76 q^{35}-200 q^{34}+187 q^{33}+446 q^{32}-28 q^{31}-255 q^{30}-838 q^{29}+35 q^{28}+1106 q^{27}+691 q^{26}-30 q^{25}-2010 q^{24}-1043 q^{23}+1407 q^{22}+2104 q^{21}+1385 q^{20}-2900 q^{19}-3056 q^{18}+470 q^{17}+3328 q^{16}+3884 q^{15}-2622 q^{14}-4993 q^{13}-1560 q^{12}+3510 q^{11}+6369 q^{10}-1322 q^9-5964 q^8-3670 q^7+2745 q^6+7940 q^5+224 q^4-5927 q^3-5156 q^2+1581 q+8447+1581 q^{-1} -5156 q^{-2} -5927 q^{-3} +224 q^{-4} +7940 q^{-5} +2745 q^{-6} -3670 q^{-7} -5964 q^{-8} -1322 q^{-9} +6369 q^{-10} +3510 q^{-11} -1560 q^{-12} -4993 q^{-13} -2622 q^{-14} +3884 q^{-15} +3328 q^{-16} +470 q^{-17} -3056 q^{-18} -2900 q^{-19} +1385 q^{-20} +2104 q^{-21} +1407 q^{-22} -1043 q^{-23} -2010 q^{-24} -30 q^{-25} +691 q^{-26} +1106 q^{-27} +35 q^{-28} -838 q^{-29} -255 q^{-30} -28 q^{-31} +446 q^{-32} +187 q^{-33} -200 q^{-34} -76 q^{-35} -105 q^{-36} +100 q^{-37} +66 q^{-38} -38 q^{-39} +7 q^{-40} -35 q^{-41} +16 q^{-42} +12 q^{-43} -11 q^{-44} +6 q^{-45} -6 q^{-46} +3 q^{-47} +2 q^{-48} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+3 q^{74}-2 q^{73}-3 q^{72}+6 q^{71}-q^{70}-7 q^{69}+5 q^{68}-q^{67}-6 q^{66}+22 q^{65}+12 q^{64}-33 q^{63}-28 q^{62}-23 q^{61}+12 q^{60}+107 q^{59}+126 q^{58}-26 q^{57}-224 q^{56}-306 q^{55}-131 q^{54}+358 q^{53}+738 q^{52}+521 q^{51}-347 q^{50}-1339 q^{49}-1437 q^{48}-86 q^{47}+1938 q^{46}+2901 q^{45}+1464 q^{44}-2053 q^{43}-4912 q^{42}-3962 q^{41}+1009 q^{40}+6645 q^{39}+7854 q^{38}+1950 q^{37}-7526 q^{36}-12408 q^{35}-7022 q^{34}+6162 q^{33}+16808 q^{32}+14196 q^{31}-2214 q^{30}-19755 q^{29}-22327 q^{28}-4702 q^{27}+20249 q^{26}+30372 q^{25}+13780 q^{24}-17854 q^{23}-36950 q^{22}-23916 q^{21}+12741 q^{20}+41256 q^{19}+33898 q^{18}-5831 q^{17}-43082 q^{16}-42435 q^{15}-1995 q^{14}+42625 q^{13}+49289 q^{12}+9458 q^{11}-40678 q^{10}-53776 q^9-16350 q^8+37661 q^7+56948 q^6+21839 q^5-34393 q^4-58157 q^3-26722 q^2+30574 q+58989+30574 q^{-1} -26722 q^{-2} -58157 q^{-3} -34393 q^{-4} +21839 q^{-5} +56948 q^{-6} +37661 q^{-7} -16350 q^{-8} -53776 q^{-9} -40678 q^{-10} +9458 q^{-11} +49289 q^{-12} +42625 q^{-13} -1995 q^{-14} -42435 q^{-15} -43082 q^{-16} -5831 q^{-17} +33898 q^{-18} +41256 q^{-19} +12741 q^{-20} -23916 q^{-21} -36950 q^{-22} -17854 q^{-23} +13780 q^{-24} +30372 q^{-25} +20249 q^{-26} -4702 q^{-27} -22327 q^{-28} -19755 q^{-29} -2214 q^{-30} +14196 q^{-31} +16808 q^{-32} +6162 q^{-33} -7022 q^{-34} -12408 q^{-35} -7526 q^{-36} +1950 q^{-37} +7854 q^{-38} +6645 q^{-39} +1009 q^{-40} -3962 q^{-41} -4912 q^{-42} -2053 q^{-43} +1464 q^{-44} +2901 q^{-45} +1938 q^{-46} -86 q^{-47} -1437 q^{-48} -1339 q^{-49} -347 q^{-50} +521 q^{-51} +738 q^{-52} +358 q^{-53} -131 q^{-54} -306 q^{-55} -224 q^{-56} -26 q^{-57} +126 q^{-58} +107 q^{-59} +12 q^{-60} -23 q^{-61} -28 q^{-62} -33 q^{-63} +12 q^{-64} +22 q^{-65} -6 q^{-66} - q^{-67} +5 q^{-68} -7 q^{-69} - q^{-70} +6 q^{-71} -3 q^{-72} -2 q^{-73} +3 q^{-74} - q^{-75} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{105}-3 q^{104}+2 q^{103}+3 q^{102}-6 q^{101}+q^{100}+2 q^{99}+13 q^{98}-16 q^{97}-9 q^{96}+19 q^{95}-25 q^{94}+4 q^{93}+23 q^{92}+65 q^{91}-37 q^{90}-76 q^{89}+6 q^{88}-111 q^{87}-5 q^{86}+138 q^{85}+355 q^{84}+83 q^{83}-201 q^{82}-230 q^{81}-721 q^{80}-461 q^{79}+222 q^{78}+1432 q^{77}+1389 q^{76}+649 q^{75}-284 q^{74}-2797 q^{73}-3533 q^{72}-2189 q^{71}+2195 q^{70}+5265 q^{69}+6485 q^{68}+4826 q^{67}-3342 q^{66}-10791 q^{65}-13857 q^{64}-6418 q^{63}+5054 q^{62}+18157 q^{61}+25060 q^{60}+12966 q^{59}-9550 q^{58}-33295 q^{57}-37526 q^{56}-22549 q^{55}+14193 q^{54}+53926 q^{53}+61632 q^{52}+32396 q^{51}-27693 q^{50}-76883 q^{49}-93269 q^{48}-46014 q^{47}+45802 q^{46}+118029 q^{45}+127831 q^{44}+49918 q^{43}-66677 q^{42}-170101 q^{41}-168708 q^{40}-48773 q^{39}+114335 q^{38}+226763 q^{37}+196099 q^{36}+40026 q^{35}-178799 q^{34}-291732 q^{33}-214092 q^{32}+10151 q^{31}+252753 q^{30}+339031 q^{29}+214506 q^{28}-88324 q^{27}-340384 q^{26}-371767 q^{25}-154929 q^{24}+184915 q^{23}+408956 q^{22}+376191 q^{21}+54698 q^{20}-302849 q^{19}-459218 q^{18}-303606 q^{17}+72234 q^{16}+401180 q^{15}+471852 q^{14}+181047 q^{13}-225982 q^{12}-477196 q^{11}-394216 q^{10}-27314 q^9+357649 q^8+507058 q^7+261553 q^6-155019 q^5-462097 q^4-437520 q^3-96500 q^2+311797 q+513517+311797 q^{-1} -96500 q^{-2} -437520 q^{-3} -462097 q^{-4} -155019 q^{-5} +261553 q^{-6} +507058 q^{-7} +357649 q^{-8} -27314 q^{-9} -394216 q^{-10} -477196 q^{-11} -225982 q^{-12} +181047 q^{-13} +471852 q^{-14} +401180 q^{-15} +72234 q^{-16} -303606 q^{-17} -459218 q^{-18} -302849 q^{-19} +54698 q^{-20} +376191 q^{-21} +408956 q^{-22} +184915 q^{-23} -154929 q^{-24} -371767 q^{-25} -340384 q^{-26} -88324 q^{-27} +214506 q^{-28} +339031 q^{-29} +252753 q^{-30} +10151 q^{-31} -214092 q^{-32} -291732 q^{-33} -178799 q^{-34} +40026 q^{-35} +196099 q^{-36} +226763 q^{-37} +114335 q^{-38} -48773 q^{-39} -168708 q^{-40} -170101 q^{-41} -66677 q^{-42} +49918 q^{-43} +127831 q^{-44} +118029 q^{-45} +45802 q^{-46} -46014 q^{-47} -93269 q^{-48} -76883 q^{-49} -27693 q^{-50} +32396 q^{-51} +61632 q^{-52} +53926 q^{-53} +14193 q^{-54} -22549 q^{-55} -37526 q^{-56} -33295 q^{-57} -9550 q^{-58} +12966 q^{-59} +25060 q^{-60} +18157 q^{-61} +5054 q^{-62} -6418 q^{-63} -13857 q^{-64} -10791 q^{-65} -3342 q^{-66} +4826 q^{-67} +6485 q^{-68} +5265 q^{-69} +2195 q^{-70} -2189 q^{-71} -3533 q^{-72} -2797 q^{-73} -284 q^{-74} +649 q^{-75} +1389 q^{-76} +1432 q^{-77} +222 q^{-78} -461 q^{-79} -721 q^{-80} -230 q^{-81} -201 q^{-82} +83 q^{-83} +355 q^{-84} +138 q^{-85} -5 q^{-86} -111 q^{-87} +6 q^{-88} -76 q^{-89} -37 q^{-90} +65 q^{-91} +23 q^{-92} +4 q^{-93} -25 q^{-94} +19 q^{-95} -9 q^{-96} -16 q^{-97} +13 q^{-98} +2 q^{-99} + q^{-100} -6 q^{-101} +3 q^{-102} +2 q^{-103} -3 q^{-104} + q^{-105} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = <math>-q^{140}+3 q^{139}-2 q^{138}-3 q^{137}+6 q^{136}-q^{135}-2 q^{134}-8 q^{133}-2 q^{132}+26 q^{131}-4 q^{130}-16 q^{129}+9 q^{128}-10 q^{127}-5 q^{126}-33 q^{125}-13 q^{124}+116 q^{123}+50 q^{122}-26 q^{121}-29 q^{120}-125 q^{119}-85 q^{118}-157 q^{117}-63 q^{116}+419 q^{115}+466 q^{114}+337 q^{113}+57 q^{112}-600 q^{111}-873 q^{110}-1209 q^{109}-936 q^{108}+771 q^{107}+2108 q^{106}+3043 q^{105}+2672 q^{104}+56 q^{103}-2810 q^{102}-6207 q^{101}-7597 q^{100}-3984 q^{99}+2271 q^{98}+10373 q^{97}+15922 q^{96}+13509 q^{95}+4436 q^{94}-11677 q^{93}-27637 q^{92}-32189 q^{91}-22927 q^{90}+3288 q^{89}+36742 q^{88}+58999 q^{87}+59556 q^{86}+26928 q^{85}-30379 q^{84}-85635 q^{83}-115374 q^{82}-91056 q^{81}-11249 q^{80}+92139 q^{79}+178949 q^{78}+192793 q^{77}+109393 q^{76}-46212 q^{75}-220989 q^{74}-320461 q^{73}-275920 q^{72}-84834 q^{71}+197453 q^{70}+435313 q^{69}+497518 q^{68}+324571 q^{67}-56417 q^{66}-479434 q^{65}-733438 q^{64}-665495 q^{63}-235794 q^{62}+385160 q^{61}+909654 q^{60}+1062999 q^{59}+685397 q^{58}-99638 q^{57}-946811 q^{56}-1439200 q^{55}-1248108 q^{54}-391620 q^{53}+773683 q^{52}+1698527 q^{51}+1845484 q^{50}+1057111 q^{49}-362517 q^{48}-1760621 q^{47}-2375083 q^{46}-1817538 q^{45}-266332 q^{44}+1579475 q^{43}+2744936 q^{42}+2571998 q^{41}+1043835 q^{40}-1162411 q^{39}-2896546 q^{38}-3220809 q^{37}-1872504 q^{36}+563155 q^{35}+2817908 q^{34}+3693597 q^{33}+2654224 q^{32}+133791 q^{31}-2544428 q^{30}-3961664 q^{29}-3310823 q^{28}-837836 q^{27}+2140085 q^{26}+4038642 q^{25}+3802262 q^{24}+1473283 q^{23}-1681858 q^{22}-3967328 q^{21}-4122739 q^{20}-1994637 q^{19}+1233620 q^{18}+3806261 q^{17}+4300157 q^{16}+2385866 q^{15}-843628 q^{14}-3608276 q^{13}-4371676 q^{12}-2661339 q^{11}+526463 q^{10}+3415882 q^9+4387166 q^8+2849008 q^7-284107 q^6-3249145 q^5-4377089 q^4-2987401 q^3+87368 q^2+3111376 q+4373931+3111376 q^{-1} +87368 q^{-2} -2987401 q^{-3} -4377089 q^{-4} -3249145 q^{-5} -284107 q^{-6} +2849008 q^{-7} +4387166 q^{-8} +3415882 q^{-9} +526463 q^{-10} -2661339 q^{-11} -4371676 q^{-12} -3608276 q^{-13} -843628 q^{-14} +2385866 q^{-15} +4300157 q^{-16} +3806261 q^{-17} +1233620 q^{-18} -1994637 q^{-19} -4122739 q^{-20} -3967328 q^{-21} -1681858 q^{-22} +1473283 q^{-23} +3802262 q^{-24} +4038642 q^{-25} +2140085 q^{-26} -837836 q^{-27} -3310823 q^{-28} -3961664 q^{-29} -2544428 q^{-30} +133791 q^{-31} +2654224 q^{-32} +3693597 q^{-33} +2817908 q^{-34} +563155 q^{-35} -1872504 q^{-36} -3220809 q^{-37} -2896546 q^{-38} -1162411 q^{-39} +1043835 q^{-40} +2571998 q^{-41} +2744936 q^{-42} +1579475 q^{-43} -266332 q^{-44} -1817538 q^{-45} -2375083 q^{-46} -1760621 q^{-47} -362517 q^{-48} +1057111 q^{-49} +1845484 q^{-50} +1698527 q^{-51} +773683 q^{-52} -391620 q^{-53} -1248108 q^{-54} -1439200 q^{-55} -946811 q^{-56} -99638 q^{-57} +685397 q^{-58} +1062999 q^{-59} +909654 q^{-60} +385160 q^{-61} -235794 q^{-62} -665495 q^{-63} -733438 q^{-64} -479434 q^{-65} -56417 q^{-66} +324571 q^{-67} +497518 q^{-68} +435313 q^{-69} +197453 q^{-70} -84834 q^{-71} -275920 q^{-72} -320461 q^{-73} -220989 q^{-74} -46212 q^{-75} +109393 q^{-76} +192793 q^{-77} +178949 q^{-78} +92139 q^{-79} -11249 q^{-80} -91056 q^{-81} -115374 q^{-82} -85635 q^{-83} -30379 q^{-84} +26928 q^{-85} +59556 q^{-86} +58999 q^{-87} +36742 q^{-88} +3288 q^{-89} -22927 q^{-90} -32189 q^{-91} -27637 q^{-92} -11677 q^{-93} +4436 q^{-94} +13509 q^{-95} +15922 q^{-96} +10373 q^{-97} +2271 q^{-98} -3984 q^{-99} -7597 q^{-100} -6207 q^{-101} -2810 q^{-102} +56 q^{-103} +2672 q^{-104} +3043 q^{-105} +2108 q^{-106} +771 q^{-107} -936 q^{-108} -1209 q^{-109} -873 q^{-110} -600 q^{-111} +57 q^{-112} +337 q^{-113} +466 q^{-114} +419 q^{-115} -63 q^{-116} -157 q^{-117} -85 q^{-118} -125 q^{-119} -29 q^{-120} -26 q^{-121} +50 q^{-122} +116 q^{-123} -13 q^{-124} -33 q^{-125} -5 q^{-126} -10 q^{-127} +9 q^{-128} -16 q^{-129} -4 q^{-130} +26 q^{-131} -2 q^{-132} -8 q^{-133} -2 q^{-134} - q^{-135} +6 q^{-136} -3 q^{-137} -2 q^{-138} +3 q^{-139} - q^{-140} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 99]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 11, 17, 12], X[14, 7, 15, 8], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 99]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 11, 17, 12], X[14, 7, 15, 8], |
|||
X[8, 15, 9, 16], X[20, 13, 1, 14], X[12, 19, 13, 20], |
X[8, 15, 9, 16], X[20, 13, 1, 14], X[12, 19, 13, 20], |
||
X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]]</nowiki></ |
X[18, 6, 19, 5], X[2, 10, 3, 9], X[4, 18, 5, 17]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 99]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 99]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, |
|||
-8, 7, -6]</nowiki></ |
-8, 7, -6]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 99]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, 2, -1, 2, 2}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 99]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 18, 14, 2, 16, 20, 8, 4, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 99]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, 2, -1, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 99]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 99]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_99_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 99]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 2, 4, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 99]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 10 16 2 3 4 |
|||
19 + t - -- + -- - -- - 16 t + 10 t - 4 t + t |
19 + t - -- + -- - -- - 16 t + 10 t - 4 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 99]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 4 z + 6 z + 4 z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 99]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 99]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 4 z + 6 z + 4 z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 99]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 7 10 12 2 3 4 5 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 99]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 99]], KnotSignature[Knot[10, 99]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{81, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 99]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 7 10 12 2 3 4 5 |
|||
15 - q + -- - -- + -- - -- - 12 q + 10 q - 7 q + 3 q - q |
15 - q + -- - -- + -- - -- - 12 q + 10 q - 7 q + 3 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 99]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 -12 3 -6 -4 6 2 4 6 10 12 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 99]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 99]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -12 3 -6 -4 6 2 4 6 10 12 |
|||
1 - q + q - --- - q - q + -- + 6 q - q - q - 3 q + q - |
1 - q + q - --- - q - q + -- + 6 q - q - q - 3 q + q - |
||
10 2 |
10 2 |
||
Line 99: | Line 179: | ||
14 |
14 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 99]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 99]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
4 2 2 6 z 2 2 4 4 z 2 4 |
|||
9 - -- - 4 a + 16 z - ---- - 6 a z + 14 z - ---- - 4 a z + |
|||
2 2 2 |
|||
a a a |
|||
6 |
|||
6 z 2 6 8 |
|||
6 z - -- - a z + z |
|||
2 |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 99]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
4 2 z 3 z 10 z 3 5 2 z |
4 2 z 3 z 10 z 3 5 2 z |
||
9 + -- + 4 a + -- - --- - ---- - 10 a z - 3 a z + a z - 18 z + -- - |
9 + -- + 4 a + -- - --- - ---- - 10 a z - 3 a z + a z - 18 z + -- - |
||
Line 134: | Line 236: | ||
2 z 9 |
2 z 9 |
||
---- + 2 a z |
---- + 2 a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 99]], Vassiliev[3][Knot[10, 99]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 99]], Vassiliev[3][Knot[10, 99]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 99]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>8 1 2 1 5 2 5 5 |
|||
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 149: | Line 261: | ||
7 4 9 4 11 5 |
7 4 9 4 11 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 99], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 2 8 19 5 37 53 7 91 85 |
|||
171 + q - --- + --- + --- - --- + --- + -- - -- - -- + -- - -- - |
|||
14 13 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q q |
|||
40 146 93 75 2 3 4 5 6 |
|||
-- + --- - -- - -- - 75 q - 93 q + 146 q - 40 q - 85 q + 91 q - |
|||
4 3 2 q |
|||
q q q |
|||
7 8 9 10 11 12 13 14 15 |
|||
7 q - 53 q + 37 q + 5 q - 19 q + 8 q + 2 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 99's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X10,4,11,3 X16,11,17,12 X14,7,15,8 X8,15,9,16 X20,13,1,14 X12,19,13,20 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
Gauss code | 1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, -6 |
Dowker-Thistlethwaite code | 6 10 18 14 2 16 20 8 4 12 |
Conway Notation | [.2.2.20.20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 12}, {2, 8}, {4, 9}, {8, 11}, {5, 3}, {7, 4}, {9, 6}, {1, 5}, {12, 10}, {11, 7}, {10, 2}, {6, 1}] |
[edit Notes on presentations of 10 99]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 99"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X10,4,11,3 X16,11,17,12 X14,7,15,8 X8,15,9,16 X20,13,1,14 X12,19,13,20 X18,6,19,5 X2,10,3,9 X4,18,5,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -10, 8, -1, 4, -5, 9, -2, 3, -7, 6, -4, 5, -3, 10, -8, 7, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 18 14 2 16 20 8 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.2.20.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 8}, {4, 9}, {8, 11}, {5, 3}, {7, 4}, {9, 6}, {1, 5}, {12, 10}, {11, 7}, {10, 2}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 99"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 99"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 99. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|