10 108: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 10 | |
|||
<span id="top"></span> |
|||
k = 108 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-9,8,-1,4,-5,6,-7,9,-8,3,-4,10,-2,7,-6,5,-3/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
|- valign=top |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
</table> | |
|||
|{{Rolfsen Knot Site Links|n=10|k=108|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-9,8,-1,4,-5,6,-7,9,-8,3,-4,10,-2,7,-6,5,-3/goTop.html}} |
|||
braid_crossings = 11 | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_width = 4 | |
|||
|} |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n161]], | |
|||
<br style="clear:both" /> |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 48: | Line 40: | ||
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-3 q^{16}+2 q^{15}+4 q^{14}-11 q^{13}+11 q^{12}+3 q^{11}-25 q^{10}+30 q^9+2 q^8-47 q^7+47 q^6+13 q^5-67 q^4+47 q^3+30 q^2-73 q+32+42 q^{-1} -62 q^{-2} +11 q^{-3} +43 q^{-4} -39 q^{-5} -5 q^{-6} +30 q^{-7} -14 q^{-8} -9 q^{-9} +11 q^{-10} - q^{-11} -3 q^{-12} + q^{-13} </math> | |
|||
coloured_jones_3 = <math>-q^{33}+3 q^{32}-2 q^{31}-q^{30}-q^{29}+4 q^{28}-3 q^{26}+q^{25}-6 q^{24}+5 q^{23}+17 q^{22}-4 q^{21}-49 q^{20}+5 q^{19}+87 q^{18}+13 q^{17}-138 q^{16}-38 q^{15}+173 q^{14}+85 q^{13}-195 q^{12}-132 q^{11}+191 q^{10}+172 q^9-162 q^8-201 q^7+118 q^6+215 q^5-70 q^4-213 q^3+17 q^2+208 q+26-183 q^{-1} -77 q^{-2} +164 q^{-3} +109 q^{-4} -122 q^{-5} -143 q^{-6} +82 q^{-7} +150 q^{-8} -25 q^{-9} -151 q^{-10} -16 q^{-11} +121 q^{-12} +53 q^{-13} -84 q^{-14} -66 q^{-15} +43 q^{-16} +61 q^{-17} -12 q^{-18} -42 q^{-19} -6 q^{-20} +23 q^{-21} +9 q^{-22} -9 q^{-23} -5 q^{-24} + q^{-25} +3 q^{-26} - q^{-27} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{54}-3 q^{53}+2 q^{52}+q^{51}-2 q^{50}+8 q^{49}-15 q^{48}+6 q^{47}+3 q^{46}-q^{45}+26 q^{44}-52 q^{43}+6 q^{42}+20 q^{41}+30 q^{40}+58 q^{39}-159 q^{38}-55 q^{37}+77 q^{36}+196 q^{35}+166 q^{34}-406 q^{33}-329 q^{32}+107 q^{31}+600 q^{30}+548 q^{29}-686 q^{28}-932 q^{27}-157 q^{26}+1062 q^{25}+1304 q^{24}-646 q^{23}-1564 q^{22}-804 q^{21}+1118 q^{20}+2043 q^{19}-173 q^{18}-1718 q^{17}-1424 q^{16}+680 q^{15}+2278 q^{14}+340 q^{13}-1355 q^{12}-1617 q^{11}+126 q^{10}+2033 q^9+598 q^8-834 q^7-1481 q^6-298 q^5+1618 q^4+693 q^3-333 q^2-1247 q-652+1137 q^{-1} +742 q^{-2} +187 q^{-3} -909 q^{-4} -939 q^{-5} +529 q^{-6} +618 q^{-7} +661 q^{-8} -359 q^{-9} -956 q^{-10} -95 q^{-11} +194 q^{-12} +809 q^{-13} +242 q^{-14} -554 q^{-15} -387 q^{-16} -332 q^{-17} +483 q^{-18} +502 q^{-19} - q^{-20} -198 q^{-21} -524 q^{-22} +6 q^{-23} +292 q^{-24} +236 q^{-25} +124 q^{-26} -300 q^{-27} -172 q^{-28} -7 q^{-29} +115 q^{-30} +187 q^{-31} -42 q^{-32} -74 q^{-33} -74 q^{-34} -14 q^{-35} +73 q^{-36} +18 q^{-37} +4 q^{-38} -21 q^{-39} -19 q^{-40} +9 q^{-41} +3 q^{-42} +5 q^{-43} - q^{-44} -3 q^{-45} + q^{-46} </math> | |
|||
coloured_jones_5 = <math>-q^{80}+3 q^{79}-2 q^{78}-q^{77}+2 q^{76}-5 q^{75}+3 q^{74}+9 q^{73}-6 q^{72}-9 q^{71}+5 q^{70}-3 q^{69}+12 q^{68}+15 q^{67}-28 q^{66}-37 q^{65}+13 q^{64}+65 q^{63}+65 q^{62}-26 q^{61}-158 q^{60}-168 q^{59}+71 q^{58}+378 q^{57}+350 q^{56}-152 q^{55}-729 q^{54}-724 q^{53}+169 q^{52}+1349 q^{51}+1442 q^{50}-140 q^{49}-2183 q^{48}-2577 q^{47}-246 q^{46}+3200 q^{45}+4288 q^{44}+1094 q^{43}-4137 q^{42}-6440 q^{41}-2673 q^{40}+4693 q^{39}+8806 q^{38}+4912 q^{37}-4481 q^{36}-10951 q^{35}-7654 q^{34}+3439 q^{33}+12407 q^{32}+10374 q^{31}-1604 q^{30}-12858 q^{29}-12675 q^{28}-612 q^{27}+12362 q^{26}+14075 q^{25}+2765 q^{24}-11063 q^{23}-14553 q^{22}-4520 q^{21}+9456 q^{20}+14225 q^{19}+5636 q^{18}-7799 q^{17}-13395 q^{16}-6263 q^{15}+6350 q^{14}+12398 q^{13}+6554 q^{12}-5111 q^{11}-11423 q^{10}-6748 q^9+3968 q^8+10498 q^7+7043 q^6-2763 q^5-9620 q^4-7381 q^3+1392 q^2+8515 q+7784+201 q^{-1} -7191 q^{-2} -7951 q^{-3} -1886 q^{-4} +5414 q^{-5} +7779 q^{-6} +3519 q^{-7} -3373 q^{-8} -7002 q^{-9} -4775 q^{-10} +1077 q^{-11} +5663 q^{-12} +5432 q^{-13} +1027 q^{-14} -3732 q^{-15} -5278 q^{-16} -2755 q^{-17} +1614 q^{-18} +4338 q^{-19} +3624 q^{-20} +437 q^{-21} -2757 q^{-22} -3680 q^{-23} -1900 q^{-24} +1000 q^{-25} +2843 q^{-26} +2568 q^{-27} +587 q^{-28} -1580 q^{-29} -2404 q^{-30} -1523 q^{-31} +240 q^{-32} +1622 q^{-33} +1758 q^{-34} +727 q^{-35} -636 q^{-36} -1384 q^{-37} -1133 q^{-38} -177 q^{-39} +727 q^{-40} +1013 q^{-41} +611 q^{-42} -112 q^{-43} -634 q^{-44} -641 q^{-45} -233 q^{-46} +212 q^{-47} +433 q^{-48} +337 q^{-49} +42 q^{-50} -203 q^{-51} -241 q^{-52} -122 q^{-53} +24 q^{-54} +122 q^{-55} +112 q^{-56} +26 q^{-57} -40 q^{-58} -48 q^{-59} -31 q^{-60} -6 q^{-61} +24 q^{-62} +17 q^{-63} + q^{-64} -3 q^{-65} -3 q^{-66} -5 q^{-67} + q^{-68} +3 q^{-69} - q^{-70} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{111}-3 q^{110}+2 q^{109}+q^{108}-2 q^{107}+5 q^{106}-6 q^{105}+3 q^{104}-9 q^{103}+12 q^{102}+5 q^{101}-22 q^{100}+19 q^{99}-9 q^{98}+10 q^{97}-12 q^{96}+33 q^{95}-14 q^{94}-95 q^{93}+41 q^{92}+39 q^{91}+87 q^{90}+27 q^{89}+30 q^{88}-203 q^{87}-366 q^{86}+86 q^{85}+356 q^{84}+542 q^{83}+269 q^{82}-209 q^{81}-1128 q^{80}-1401 q^{79}+122 q^{78}+1687 q^{77}+2547 q^{76}+1501 q^{75}-1118 q^{74}-4487 q^{73}-5207 q^{72}-720 q^{71}+5346 q^{70}+9172 q^{69}+6757 q^{68}-1874 q^{67}-12759 q^{66}-16513 q^{65}-6740 q^{64}+10371 q^{63}+23970 q^{62}+22592 q^{61}+3544 q^{60}-24102 q^{59}-39357 q^{58}-26368 q^{57}+8130 q^{56}+42949 q^{55}+52636 q^{54}+25440 q^{53}-26293 q^{52}-66239 q^{51}-61777 q^{50}-13345 q^{49}+49816 q^{48}+84951 q^{47}+63530 q^{46}-6489 q^{45}-77209 q^{44}-96492 q^{43}-50565 q^{42}+32363 q^{41}+97465 q^{40}+97537 q^{39}+27996 q^{38}-62409 q^{37}-108472 q^{36}-80956 q^{35}+1832 q^{34}+84205 q^{33}+107686 q^{32}+54096 q^{31}-36325 q^{30}-96530 q^{29}-88864 q^{28}-20008 q^{27}+61840 q^{26}+97531 q^{25}+61125 q^{24}-17903 q^{23}-78153 q^{22}-81755 q^{21}-27420 q^{20}+45793 q^{19}+84006 q^{18}+58906 q^{17}-8820 q^{16}-64998 q^{15}-74653 q^{14}-30977 q^{13}+34853 q^{12}+75008 q^{11}+59566 q^{10}+948 q^9-53786 q^8-71787 q^7-39619 q^6+20066 q^5+65590 q^4+64028 q^3+17438 q^2-36353 q-66601-51600 q^{-1} -2564 q^{-2} +47771 q^{-3} +64244 q^{-4} +36874 q^{-5} -9827 q^{-6} -50697 q^{-7} -57425 q^{-8} -27811 q^{-9} +19166 q^{-10} +51100 q^{-11} +48281 q^{-12} +19289 q^{-13} -21990 q^{-14} -47116 q^{-15} -43104 q^{-16} -12262 q^{-17} +23013 q^{-18} +40860 q^{-19} +36660 q^{-20} +9674 q^{-21} -20087 q^{-22} -37102 q^{-23} -30257 q^{-24} -7793 q^{-25} +15632 q^{-26} +30926 q^{-27} +26259 q^{-28} +8683 q^{-29} -13154 q^{-30} -24182 q^{-31} -21983 q^{-32} -9668 q^{-33} +8435 q^{-34} +18881 q^{-35} +19433 q^{-36} +8574 q^{-37} -3753 q^{-38} -13447 q^{-39} -16202 q^{-40} -9093 q^{-41} +653 q^{-42} +9795 q^{-43} +11599 q^{-44} +9093 q^{-45} +1870 q^{-46} -5920 q^{-47} -8909 q^{-48} -7892 q^{-49} -2526 q^{-50} +2047 q^{-51} +6356 q^{-52} +6486 q^{-53} +3254 q^{-54} -539 q^{-55} -3828 q^{-56} -4309 q^{-57} -3701 q^{-58} -444 q^{-59} +2026 q^{-60} +3043 q^{-61} +2648 q^{-62} +1015 q^{-63} -477 q^{-64} -2135 q^{-65} -1818 q^{-66} -1032 q^{-67} +74 q^{-68} +900 q^{-69} +1172 q^{-70} +997 q^{-71} +22 q^{-72} -356 q^{-73} -642 q^{-74} -520 q^{-75} -256 q^{-76} +110 q^{-77} +389 q^{-78} +225 q^{-79} +166 q^{-80} -15 q^{-81} -102 q^{-82} -160 q^{-83} -86 q^{-84} +24 q^{-85} +17 q^{-86} +54 q^{-87} +32 q^{-88} +18 q^{-89} -22 q^{-90} -20 q^{-91} + q^{-92} -7 q^{-93} +3 q^{-94} +3 q^{-95} +5 q^{-96} - q^{-97} -3 q^{-98} + q^{-99} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 108]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 4, 17, 3], X[20, 13, 1, 14], X[14, 7, 15, 8], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 108]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 4, 17, 3], X[20, 13, 1, 14], X[14, 7, 15, 8], |
|||
X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], |
X[8, 19, 9, 20], X[18, 9, 19, 10], X[10, 17, 11, 18], |
||
X[12, 6, 13, 5], X[4, 12, 5, 11], X[2, 16, 3, 15]]</nowiki></ |
X[12, 6, 13, 5], X[4, 12, 5, 11], X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 108]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 108]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, |
|||
-6, 5, -3]</nowiki></ |
-6, 5, -3]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 108]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, -2, 1, 1, 3, -2, 1, -2, -3, -3}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 108]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 16, 12, 14, 18, 4, 20, 2, 10, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 108]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, -2, 1, 1, 3, -2, 1, -2, -3, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 108]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 108]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_108_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 108]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 108]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 14 2 3 |
|||
-15 + -- - -- + -- + 14 t - 8 t + 2 t |
-15 + -- - -- + -- + 14 t - 8 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 108]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 4 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 108]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 108], Knot[11, NonAlternating, 161]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 |
|||
1 + 4 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 108]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 8 2 3 4 5 6 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 108], Knot[11, NonAlternating, 161]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 108]], KnotSignature[Knot[10, 108]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{63, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 108]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 5 8 2 3 4 5 6 |
|||
-9 - q + -- - -- + - + 10 q - 10 q + 8 q - 5 q + 3 q - q |
-9 - q + -- - -- + - + 10 q - 10 q + 8 q - 5 q + 3 q - q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 108]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 2 -2 4 6 8 10 16 18 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 108]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 108]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -12 -10 2 -2 4 6 8 10 16 18 |
|||
2 - q + q + -- - q - q + q - 2 q + 2 q + q - q |
2 - q + q + -- - q - q + q - 2 q + 2 q + q - q |
||
4 |
4 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 108]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 108]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
2 2 z 2 z 2 2 4 z 3 z 2 4 6 z |
|||
1 + 2 z - ---- + ---- - 2 a z + 3 z - -- + ---- - a z + z + -- |
|||
4 2 4 2 2 |
|||
a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 108]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 3 |
|||
2 z 6 z 3 2 z 2 z 2 2 z |
2 z 6 z 3 2 z 2 z 2 2 z |
||
1 - --- - --- - 6 a z - 2 a z - 10 z - -- + ---- - 7 a z + -- - |
1 - --- - --- - 6 a z - 2 a z - 10 z - -- + ---- - 7 a z + -- - |
||
Line 126: | Line 223: | ||
---- + 3 a z + ---- + 2 a z |
---- + 3 a z + ---- + 2 a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 108]], Vassiliev[3][Knot[10, 108]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 108]], Vassiliev[3][Knot[10, 108]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 108]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 3 2 5 3 |
|||
6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
6 q + 5 q + ----- + ----- + ----- + ----- + ----- + ----- + ---- + |
||
9 5 7 4 5 4 5 3 3 3 3 2 2 |
9 5 7 4 5 4 5 3 3 3 3 2 2 |
||
Line 140: | Line 247: | ||
9 4 11 4 13 5 |
9 4 11 4 13 5 |
||
q t + 2 q t + q t</nowiki></ |
q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 108], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -13 3 -11 11 9 14 30 5 39 43 11 62 |
|||
32 + q - --- - q + --- - -- - -- + -- - -- - -- + -- + -- - -- + |
|||
12 10 9 8 7 6 5 4 3 2 |
|||
q q q q q q q q q q |
|||
42 2 3 4 5 6 7 8 |
|||
-- - 73 q + 30 q + 47 q - 67 q + 13 q + 47 q - 47 q + 2 q + |
|||
q |
|||
9 10 11 12 13 14 15 16 17 |
|||
30 q - 25 q + 3 q + 11 q - 11 q + 4 q + 2 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 108's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,4,17,3 X20,13,1,14 X14,7,15,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X12,6,13,5 X4,12,5,11 X2,16,3,15 |
Gauss code | 1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, -6, 5, -3 |
Dowker-Thistlethwaite code | 6 16 12 14 18 4 20 2 10 8 |
Conway Notation | [30:20:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{5, 11}, {7, 12}, {10, 6}, {11, 9}, {8, 10}, {4, 7}, {3, 5}, {9, 4}, {2, 8}, {1, 3}, {12, 2}, {6, 1}] |
[edit Notes on presentations of 10 108]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 108"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,4,17,3 X20,13,1,14 X14,7,15,8 X8,19,9,20 X18,9,19,10 X10,17,11,18 X12,6,13,5 X4,12,5,11 X2,16,3,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -9, 8, -1, 4, -5, 6, -7, 9, -8, 3, -4, 10, -2, 7, -6, 5, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 16 12 14 18 4 20 2 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[30:20:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 11}, {7, 12}, {10, 6}, {11, 9}, {8, 10}, {4, 7}, {3, 5}, {9, 4}, {2, 8}, {1, 3}, {12, 2}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 108"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n161,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 108"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n161,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 108. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|